Cellulose

, Volume 19, Issue 2, pp 467–480

Arabinoxylan structure affects the reinforcement of films by microfibrillated cellulose

  • Kirsi S. Mikkonen
  • Leena Pitkänen
  • Ville Liljeström
  • Elina Mabasa Bergström
  • Ritva Serimaa
  • Lennart Salmén
  • Maija Tenkanen
Article

Abstract

The chemical structure of rye arabinoxylan (rAX) was systematically modified, exploiting selective enzymes to mimic different naturally occurring xylans, i.e., its degree of substitution (DS) was decreased using α-l-arabinofuranosidase, and a controlled decrease in the degree of polymerization (DP) was performed using endo-1,4-β-d-xylanase. The arabinose to xylose ratio was decreased from 0.45 to 0.27 and the weight-average molar mass was decreased from 184,000 to 49,000 g/mol. The resulting samples were used to prepare films, as such, and with 15% (wt. − %) softwood-derived microfibrillated cellulose (MFC) to obtain novel plant-derived biocomposite materials. The enzymatic tailoring of rAX increased the crystallinity of films, evidenced by X-ray diffraction studies, and the addition of MFC to the debranched, low DS rAX induced the formation of ordered structures visible with polarizing optical microscopy. MFC decreased the moisture uptake of films and increased the relative humidity of softening of the films, detected with moisture scanning dynamic mechanical analysis. For the first time, the chemical structure of xylan was proven to significantly affect the reinforcement potential of nano-sized cellulose, as the tensile strength of films from high DP rAXs, but not that of low DP rAXs, clearly increased with the addition of MFC. At the same time, MFC only increased the Young’s modulus of films from rAX with high arabinose content, regardless of DP.

Keywords

Arabinosidase Arabinoxylan Composites Films Microfibrillated cellulose Xylanase 

References

  1. ASTM (2007) Standard test method for haze and light transmittance of transparent plastics, method ASTM D 1003–07Google Scholar
  2. Bengtsson S, Åman P, Andersson RE (1992) Structural studies on water-soluble arabinoxylans in rye grain using enzymatic hydrolysis. Carbohydr Polym 17:277–284CrossRefGoogle Scholar
  3. Ebringerová A, Heinze T (2000) Naturally occuring xylans structures, isolation procedures and properties. Macromol Rapid Commun 21:542–556CrossRefGoogle Scholar
  4. Eronen P, Heikkinen S, Österberg M, Tenkanen M, Laine J (2011) Interactions of structurally different hemicelluloses with nanofibrillar cellulose. Carbohydr Polym 86:1281–1290CrossRefGoogle Scholar
  5. Gatenholm P, Bodin A, Gröndahl M, Dammström S, Eriksson L (2008) Polymeric film or coating comprising hemicellulose. Patent US 7427643 B2, Sep 23, 2008Google Scholar
  6. Gröndahl M, Eriksson L, Gatenholm P (2004) Material properties of plasticized hardwood xylans for potential application as oxygen barrier films. Biomacromolecules 5:1528–1535CrossRefGoogle Scholar
  7. Gröndahl M, Eriksson L, Gatenholm P, Hjertberg T (2008) Polymeric film or coating comprising hemicellulose. Patent Application WO2008103123 A2, Aug 28, 2008Google Scholar
  8. Guilbert S, Gontard N, Gorris LGM (1996) Prolongation of the shelf-life of perishable food products using biodegradable films and coatings. LWT Food Sci Technol 29:10–17CrossRefGoogle Scholar
  9. Guinier A (1994) X-ray diffraction in crystals, imperfect crystals, and amorphous bodies. Dover Publications Inc., New YorkGoogle Scholar
  10. Hettrich K, Fischer S, Schröder N, Engelhardt J, Drechsler U, Loth F (2006) Derivatization and characterization of xylan from oat spelts. Macromol Symp 232:37–48CrossRefGoogle Scholar
  11. Höije A, Sternemalm E, Heikkinen S, Tenkanen M, Gatenholm P (2008) Material properties of films from enzymatically tailored arabinoxylans. Biomacromolecules 9:2042–2047CrossRefGoogle Scholar
  12. Izydorczyk MS, Biliaderis CG (1995) Cereal arabinoxylans: advances in structure and physicochemical properties. Carbohydr Polym 28:33–48CrossRefGoogle Scholar
  13. Köhnke T, Pujolras C, Roubroeks JP, Gatenholm P (2008) The effect of barley husk arabinoxylan adsorption on the properties of cellulose fibres. Cellulose 15:537–546CrossRefGoogle Scholar
  14. Köhnke T, Östlund Å, Brelid H (2011) Adsorption of arabinoxylan on cellulosic surfaces: influence of degree of substitution and substitution pattern on adsorption characteristics. Biomacromolecules 12:2633–2641CrossRefGoogle Scholar
  15. Mikkonen KS, Rita H, Helén H, Talja RA, Hyvönen L, Tenkanen M (2007) Effect of polysaccharide structure on mechanical and thermal properties of galactomannan-based films. Biomacromolecules 8:3198–3205CrossRefGoogle Scholar
  16. Mikkonen KS, Heikkinen S, Soovre A, Peura M, Serimaa R, Talja RA, Helén H, Hyvönen L, Tenkanen M (2009) Films from oat spelt arabinoxylan plasticized with glycerol and sorbitol. J Appl Polym Sci 114:457–466CrossRefGoogle Scholar
  17. Mikkonen KS, Heikkilä MI, Helén H, Hyvönen L, Tenkanen M (2010a) Spruce galactoglucomannan films show promising barrier properties. Carbohydr Polym 79:1107–1112CrossRefGoogle Scholar
  18. Mikkonen KS, Mathew AP, Pirkkalainen K, Serimaa R, Xu C, Willför S, Oksman K, Tenkanen M (2010b) Glucomannan composite films with cellulose nanowhiskers. Cellulose 17:69–81CrossRefGoogle Scholar
  19. Mikkonen KS, Stevanic JS, Joly C, Dole P, Pirkkalainen K, Serimaa R, Salmén L, Tenkanen M (2011) Composite films from spruce galactoglucomannans with microfibrillated spruce wood cellulose. Cellulose 18:713–726CrossRefGoogle Scholar
  20. Nieduszynski IA, Marchessault RH (1972) Structure of β, D(1 → 4′)-xylan hydrate. Biopolymers 11:1335–1344CrossRefGoogle Scholar
  21. Nisperos-Carriedo M (1994) Edible coatings and films based on polysaccharides. In: Baldwin EA, Nisperos-Carriedo M, Krochta JM (eds) Edible coatings and films to improve food quality. Technomic Publishing Company, Lancaster, pp 305–335Google Scholar
  22. Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola M, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941CrossRefGoogle Scholar
  23. Peng X, Ren J, Zhong L, Sun R (2011) Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties. Biomacromolecules 12:3321–3329CrossRefGoogle Scholar
  24. Pitkänen L, Virkki L, Tenkanen M, Tuomainen P (2009) Comprehensive multidetector HPSEC study on solution properties of cereal arabinoxylans in aqueous and DMSO solutions. Biomacromolecules 10:1962–1969CrossRefGoogle Scholar
  25. Ramírez F, Puls J, Zúñiga V, Saake B (2008) Sorption of corn cob and oat spelt arabinoxylan onto softwood kraft pulp. Holzforschung 62:329–337CrossRefGoogle Scholar
  26. Saxena A, Elder TJ, Pan S, Ragauskas AJ (2009) Novel nanocellulosic xylan composite film. Composites Part B 40:727–730CrossRefGoogle Scholar
  27. Sehaqui H, Liu A, Zhou Q, Berglund L (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11:2195–2198CrossRefGoogle Scholar
  28. Shen L, Patel MK (2008) Life cycle assessment of polysaccharide materials: a review. J Polym Environ 16:154–167CrossRefGoogle Scholar
  29. Sjöström E (1993) Wood chemistry fundamentals and applications. Academic Press, Inc., San DiegoGoogle Scholar
  30. Sternemalm E, Höije A, Gatenholm P (2008) Effect of arabinose substitution on the material properties of arabinoxylan films. Carbohydr Res 343:753–757CrossRefGoogle Scholar
  31. Stevanic JS, Joly C, Mikkonen KS, Pirkkalainen K, Serimaa R, Rémond C, Toriz G, Gatenholm P, Tenkanen M, Salmén L (2011) Bacterial nanocellulose-reinforced arabinoxylan films. J Appl Polym Sci 122:1030–1039CrossRefGoogle Scholar
  32. Sun RC, Tomkinson J, Wang YX, Xiao B (2000) Physico-chemical and structural characterization of hemicelluloses from wheat straw by alkaline peroxide extraction. Polymer 41:2647–2656CrossRefGoogle Scholar
  33. Sundberg A, Sundberg K, Lillandt C, Holmbom B (1996) Determination of hemicelluloses and pectins in wood and pulp fibres by acid methanolysis and gas chromatography. Nord Pulp Pap Res J 11(216–219):226Google Scholar
  34. Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795CrossRefGoogle Scholar
  35. Willför S, Sundberg K, Tenkanen M, Holmbom B (2008) Spruce-derived mannans: a potential raw material for hydrocolloids and novel advanced natural materials. Carbohydr Polym 72:197–210CrossRefGoogle Scholar
  36. Zhang Y, Pitkänen L, Douglade J, Tenkanen M, Remond C, Joly C (2011) Wheat bran arabinoxylans: chemical structure and film properties of three isolated fractions. Carbohydr Polym 86:1230–1235CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Kirsi S. Mikkonen
    • 1
  • Leena Pitkänen
    • 1
  • Ville Liljeström
    • 2
  • Elina Mabasa Bergström
    • 3
  • Ritva Serimaa
    • 2
  • Lennart Salmén
    • 3
  • Maija Tenkanen
    • 1
  1. 1.Department of Food and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
  2. 2.Department of PhysicsUniversity of HelsinkiHelsinkiFinland
  3. 3.INNVENTIA AB, Fibre & Material ScienceStockholmSweden

Personalised recommendations