Advertisement

Cellulose

, Volume 19, Issue 2, pp 561–574 | Cite as

Effect of cellulose nanofiber dimensions on sheet forming through filtration

  • Liyuan Zhang
  • Warren Batchelor
  • Swambabu Varanasi
  • Takuya Tsuzuki
  • Xungai Wang
Article

Abstract

Four different cellulose nanofibers samples were prepared from northern bleached softwood kraft fibers. Fiber diameter distributions were measured from SEM images. Fiber aspect ratios ranging from 84 to 146 were estimated from fiber suspension sedimentation measurements. Three samples had heterogeneous distributions of fiber diameters, while one sample was more homogeneous. Sheet forming experiments using filters with pores ranging from 150 to 5 μm showed that the samples with a heterogeneous distribution of fiber dimensions could be easily formed into sheets at 0.2% initial solids concentration with all filter openings. On the other hand, sheets could only be formed from the homogenous sample by using 0.5% or more initial solids content and a lower applied vacuum and smaller filter openings. The forming data and estimated aspect ratios show reasonable agreement with the predictions of the crowding number and percolation theories for the connectivity and rigidity thresholds for fiber suspensions.

Keywords

Cellulose nanofiber Nanofiber length Sedimentation Nanofiber sheets 

Notes

Acknowledgments

The authors thank Sally Gras, The University of Melbourne, for SEM images of pulp NIST-1 and Dr. Emily Perkins, Stoney Lei Wang, Ryan Lee, Siti Ibrahim, Azreen Omar, Wei Wei, Yi Mei Chew and Hong Yoong Tai for experimental assistance. Liyuan Zhang also thanks IDP Education Australia Ltd. for the IDP Student Mobility Scholarship, and Swambabu Varanasi thanks Monash University for a MGS Scholarship.

References

  1. Abe K, Yano H (2011) Formation of hydrogels from cellulose nanofibers. Carbohydr Polym 85(4):733–737. doi: 10.1016/j.carbpol.2011.03.028 CrossRefGoogle Scholar
  2. Ahola S, Österberg M, Laine J (2008) Cellulose nanofibrils—adsorption with poly (amideamine) epichlorohydrin studied by QCM-D and application as a paper strength additive. Cellulose 15(2):303–314. doi: 10.1007/s10570-007-9167-3 CrossRefGoogle Scholar
  3. Ampulski RS (2001) Report of investigation reference materials 8495 Northern Softwood Bleached Kraft 8496 Eucalyptus Hardwood Bleached Kraft. National Institute of Standards and Technology Gaithersburg, MDGoogle Scholar
  4. Andresen M, Stenius P (2007) Water-in-oil emulsions stabilized by hydrophobized micro fibrillated cellulose. J Dispers Sci Technol 28(6):837–844CrossRefGoogle Scholar
  5. Berglund LA, Peijs T (2010) Cellulose biocomposites—from bulk moldings to nanostructured systems. MRS Bull 35(3):201–207CrossRefGoogle Scholar
  6. Celzard A, Fierro V, Kerekes R (2009) Flocculation of cellulose fibres: new comparison of crowding factor with percolation and effective-medium theories. Cellulose 16(6):983–987CrossRefGoogle Scholar
  7. Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch-cellulose microfibril composites. J Appl Polym Sci 76(14):2080–2092CrossRefGoogle Scholar
  8. Dunham AJ, Sherman LM, Alfano JC (2002) Effect of dissolved and colloidal substances on drainage properties of mechanical pulp suspensions. J Pulp Pap Sci 28(9):298–304Google Scholar
  9. Edgar CD, Gray DG (2003) Smooth model cellulose I surfaces from nanocrystal suspensions. Cellulose 10(4):299–306CrossRefGoogle Scholar
  10. Eichhorn S, Dufresne A, Aranguren M, Marcovich N, Capadona J, Rowan S, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito A, Mangalam A, Simonsen J, Benight A, Bismarck A, Berglund L, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33. doi: 10.1007/s10853-009-3874-0 CrossRefGoogle Scholar
  11. Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9(6):1579–1585. doi: 10.1021/bm800038n CrossRefGoogle Scholar
  12. Ishii D, Saito T, Isogai A (2011) Viscoelastic evaluation of average length of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 12(3):548–550. doi: 10.1021/bm1013876 CrossRefGoogle Scholar
  13. Janarthanan S, Sain M (2006) Isolation of cellulose micro fibrils—an enzymatic approach. Bioresources 1(2):176–188Google Scholar
  14. Martinez DM, Buckley K, Jivan S, Lindstrom A, Thiruvengadaswamy R, Olson JA, Ruth TJ, Kerekes RJ (2001) Characterizing the mobility of papermaking fibres during sedimentation. In: Baker CF (ed) The science of papermaking: transactions of the 12th fundamental research symposium, Oxford. The Pulp and Paper Fundamental Research Society, Bury, UK, pp 225–254Google Scholar
  15. Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phy A Mater Sci Process 80(1):155–159. doi: 10.1007/s00339-003-2225-2 CrossRefGoogle Scholar
  16. Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21(16):1595–1598CrossRefGoogle Scholar
  17. Qua E, Hornsby P, Sharma H, Lyons G (2011) Preparation and characterisation of cellulose nanofibres. J Mater Sci 46(18):6029–6045. doi: 10.1007/s10853-011-5565-x CrossRefGoogle Scholar
  18. Raisanen KO, Paulapuro H, Karrila SJ (1995) The effects of retention aids, drainage conditions, and pretreatment of slurry on high-vacuum dewatering—a laboratory study. TAPPI J 78(4):140–147Google Scholar
  19. Saito T, Isogai A (2006) Wet strength improvement of TEMPO-oxidized cellulose sheets prepared with cationic polymers. Ind Eng Chem Res 46(3):773–780. doi: 10.1021/ie0611608 CrossRefGoogle Scholar
  20. Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11(9):2195–2198. doi: 10.1021/bm100490s CrossRefGoogle Scholar
  21. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494. doi: 10.1007/s10570-010-9405-y CrossRefGoogle Scholar
  22. Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16(1):75–85. doi: 10.1007/s10570-008-9244-2 CrossRefGoogle Scholar
  23. Taniguchi T, Okamura K (1998) New films produced from microfibrillated natural fibres. Polym Int 47(3):291–294. doi: 10.1002/(sici)1097-0126(199811)47:3<291:aid-pi11>3.0.co;2-1 CrossRefGoogle Scholar
  24. Trovatti E, Oliveira L, Freire CSR, Silvestre AJD, Pascoal Neto C, Cruz Pinto JJC, Gandini A (2010) Novel bacterial cellulose-acrylic resin nanocomposites. Compos Sci Technol 70(7):1148–1153CrossRefGoogle Scholar
  25. Tunç S, Duman O (2011) Preparation of active antimicrobial methyl cellulose/carvacrol/montmorillonitenanocomposite films and investigation of carvacrol release. LWT–Food Sci Technol 44(2):465–472Google Scholar
  26. Xu L, Parker I (2000) Simulating the forming process with the moving belt drainage former. Appita J 53(4):282–286Google Scholar
  27. Zhang LY, Tsuzuki T, Wang XG (2010) Preparation and characterization on cellulose nanofiber film. Mater Sci Forum 654–656:1760–1763Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Liyuan Zhang
    • 1
  • Warren Batchelor
    • 2
  • Swambabu Varanasi
    • 2
  • Takuya Tsuzuki
    • 1
  • Xungai Wang
    • 1
  1. 1.Center for Material and Fiber InnovationDeakin UniversityGeelongAustralia
  2. 2.Australian Pulp and Paper Institute, Department of Chemical EngineeringMonash UniversityMelbourneAustralia

Personalised recommendations