Advertisement

Cellulose

, Volume 18, Issue 6, pp 1487–1498 | Cite as

An improved model for the kinetic description of the thermal degradation of cellulose

  • Pedro E. Sánchez-JiménezEmail author
  • Luis A. Pérez-Maqueda
  • Antonio Perejón
  • José Pascual-Cosp
  • Mónica Benítez-Guerrero
  • José M. Criado
Article

Abstract

In spite of the large amount of work performed by many investigators during last decade, the actual understanding of the kinetics of thermal degradation of cellulose is still largely unexplained. In this paper, recent findings suggesting a nucleation and growth of nuclei mechanism as the main step of cellulose degradation have been reassessed and a more appropriate model involving chain scission and volatilization of fragments has been proposed instead. The kinetics of cellulose pyrolysis have been revisited by making use of a novel kinetic method that, without any previous assumptions regarding the kinetic model, allows performing the kinetic analysis of a set of experimental curves recorded under different heating schedules. The kinetic parameters and kinetic model obtained allows for the reconstruction of the whole set of experimental TG curves.

Keywords

Kinetics Cellulose Thermal degradation Chain scission 

Notes

Acknowledgments

Financial support from projects TEP-03002 from Junta de Andalucía and MAT 2008-06619/MAT from the Spanish Ministerio de Ciencia e Innovación is acknowledged.

References

  1. Agrawal RK (1988a) Kinetics of reactions involved in pyrolysis of cellulose.1. The 3-reaction model. Can J Chem Eng 66(3):403–412CrossRefGoogle Scholar
  2. Agrawal RK (1988b) Kinetics of reactions involved in pyrolysis of cellulose.2. The modified Kilzer-Broido Model. Can J Chem Eng 66(3):413–418CrossRefGoogle Scholar
  3. Antal MJ, Varhegyi G, Jakab E (1998) Cellulose pyrolysis kinetics: revisited. Ind Eng Chem Res 37(4):1267–1275CrossRefGoogle Scholar
  4. Arii T, Ichihara S, Nakagawa H, Fujii N (1998) A kinetic study of the thermal decomposition of polyesters by controlled-rate thermogravimetry. Thermochim Acta 319(1–2):139–149CrossRefGoogle Scholar
  5. Barneto A, Carmona J, Alfonso JE, Alcaide L (2009) Use of autocatalytic kinetics to obtain composition of lignocellulosic materials. Bioresour Technol 100(17):3963–3973CrossRefGoogle Scholar
  6. Bigger SW, Scheirs J, Camino G (1998) An investigation of the kinetics of cellulose degradation under non-isothermal conditions. Polym Degrad Stab 62(1):33–40CrossRefGoogle Scholar
  7. Bradbury AGW, Sakai Y, Shafizadeh F (1979) Kinetic model for pyrolysis of cellulose. J Appl Polym Sci 23(11):3271–3280CrossRefGoogle Scholar
  8. Calvini P (2005) The influence of levelling-off degree of polymerisation on the kinetics of cellulose degradation. Cellulose 12(4):445–447CrossRefGoogle Scholar
  9. Calvini P (2008) Comments on the article “On the degradation evolution equations of cellulose” by Hongzhi Ding and Zhongdong Wang. Cellulose 15(2):225–228CrossRefGoogle Scholar
  10. Calvini P, Gorassini A, Merlani AL (2008) On the kinetics of cellulose degradation: looking beyond the pseudo zero order rate equation. Cellulose 15(2):193–203CrossRefGoogle Scholar
  11. Capart R, Khezami L, Burnham AK (2004) Assessment of various kinetic models for the pyrolysis of a microgranular cellulose. Thermochim Acta 417(1):79–89CrossRefGoogle Scholar
  12. Criado JM, Morales J (1976) Defects of thermogravimetric analysis for Discerning Between 1st order reactions and those taking place through Avrami-Erofeevs mechanism. Thermochim Acta 16(3):382–387CrossRefGoogle Scholar
  13. Criado JM, Morales J (1977) Thermal decomposition reactions of solids controlled by diffusion and phase-boundary processes—possible misinterpretation from thermogravimetric data. Thermochim Acta 19(3):305–317CrossRefGoogle Scholar
  14. Criado JM, Perez-Maqueda LA, Gotor FJ, Malek J, Koga N (2003) A unified theory for the kinetic analysis of solid state reactions under any thermal pathway. J Therm Anal Calorim 72(3):901–906CrossRefGoogle Scholar
  15. Criado JM, Sanchez-Jimenez PE, Perez-Maqueda LA (2008) Critical study of the isoconversional methods of kinetic analysis. J Therm Anal Calorim 92(1):199–203CrossRefGoogle Scholar
  16. Ding HZ, Wang ZD (2008a) Author response to the comments by P. Calvini regarding the article “On the degradation evolution equations of cellulose” by H.-Z. Ding and Z. D. Wang. Cellulose 15(2):229–237CrossRefGoogle Scholar
  17. Ding HZ, Wang ZD (2008b) On the degradation evolution equations of cellulose. Cellulose 15(2):205–224CrossRefGoogle Scholar
  18. Dollimor D, Holt B (1973) Thermal degradation of cellulose in nitrogen. J Polym Sci Part B Polym Phys 11(9):1703–1711Google Scholar
  19. Emsley AM (2008) Cellulosic ethanol re-ignites the fire of cellulose degradation. Cellulose 15(2):187–192CrossRefGoogle Scholar
  20. Ganster J, Fink HP (2006) Novel cellulose fibre reinforced thermoplastic materials. Cellulose 13(3):271–280CrossRefGoogle Scholar
  21. Kilzer FJ, Broido A (1965) Speculation on the nature of cellulose pyrolysis. Pyrodynamics 2:151–163Google Scholar
  22. Koga N, Criado JM (1998) The influence of mass transfer phenomena on the kinetic analysis for the thermal decomposition of calcium carbonate by constant rate thermal analysis (CRTA) under vacuum. Int J Chem Kinet 30(10):737–744CrossRefGoogle Scholar
  23. Lin YC, Cho J, Tompsett GA, Westmoreland PR, Huber GW (2009) Kinetics and mechanism of cellulose pyrolysis. J Phys Chem C 113(46):20097–20107CrossRefGoogle Scholar
  24. Liu HY, Liu DG, Yao F, Wu QL (2010) Fabrication and properties of transparent polymethylmethacrylate/cellulose nanocrystals composites. Bioresour Technol 101(14):5685–5692CrossRefGoogle Scholar
  25. Mamleev V, Bourbigot S, Le Bras M, Yvon J, Lefebvre J (2006) Model-free method for evaluation of activation energies in modulated thermogravimetry and analysis of cellulose decomposition. Chem Eng Sci 61(4):1276–1292CrossRefGoogle Scholar
  26. Mamleev V, Bourbigot S, Yvon J (2007a) Kinetic analysis of the thermal decomposition of cellulose: the change of the rate limitation. J Anal Appl Pyrol 80(1):141–150CrossRefGoogle Scholar
  27. Mamleev V, Bourbigot S, Yvon J (2007b) Kinetic analysis of the thermal decomposition of cellulose: the main step of mass loss. J Anal Appl Pyrol 80(1):151–165CrossRefGoogle Scholar
  28. Mamleev V, Bourbigot S, Le Bras M, Yvon J (2009) The facts and hypotheses relating to the phenomenological model of cellulose pyrolysis Interdependence of the steps. J Anal Appl Pyrol 84(1):1–17CrossRefGoogle Scholar
  29. Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20(3):848–889CrossRefGoogle Scholar
  30. PerezMaqueda LA, Ortega A, Criado JM (1996) The use of master plots for discriminating the kinetic model of solid state reactions from a single constant-rate thermal analysis (CRTA) experiment. Thermochim Acta 277:165–173CrossRefGoogle Scholar
  31. Perez-Maqueda LA, Criado JM, Subrt J, Real C (1999) Synthesis of acicular hematite catalysts with tailored porosity. Catal Lett 60(3):151–156CrossRefGoogle Scholar
  32. Perez-Maqueda LA, Criado JM, Gotor FJ (2002a) Controlled rate thermal analysis commanded by mass spectrometry for studying the kinetics of thermal decomposition of very stable solids. Int J Chem Kinet 34(3):184–192CrossRefGoogle Scholar
  33. Perez-Maqueda LA, Criado JM, Gotor FJ, Malek J (2002b) Advantages of combined kinetic analysis of experimental data obtained under any heating profile. J Phys Chem A 106(12):2862–2868CrossRefGoogle Scholar
  34. Perez-Maqueda LA, Criado JM, Malek J (2003) Combined kinetic analysis for crystallization kinetics of non-crystalline solids. J Non-Cryst Solids 320(1–3):84–91CrossRefGoogle Scholar
  35. Perez-Maqueda LA, Criado JM, Sanchez-Jimenez PE (2006) Combined kinetic analysis of solid-state reactions: a powerful tool for the simultaneous determination of kinetic parameters and the kinetic model without previous assumptions on the reaction mechanism. J Phys Chem A 110(45):12456–12462CrossRefGoogle Scholar
  36. Reynolds JG, Burnham AK (1997) Pyrolysis decomposition kinetics of cellulose-based materials by constant heating rate micropyrolysis. Energy Fuels 11(1):88–97CrossRefGoogle Scholar
  37. Rouquerol J (2003) A general introduction to SCTA and to rate-controlled SCTA. J Therm Anal Calorim 72(3):1081–1086CrossRefGoogle Scholar
  38. Saddawi A, Jones JM, Williams A, Wojtowicz MA (2010) Kinetics of the Thermal Decomposition of Biomass. Energy Fuels 24:1274–1282CrossRefGoogle Scholar
  39. Sanchez-Jimenez PE, Perez-Maqueda LA, Perejon A, Criado JM (2009) Combined kinetic analysis of thermal degradation of polymeric materials under any thermal pathway. Polym Degrad Stab 94(11):2079–2085CrossRefGoogle Scholar
  40. Sanchez-Jimenez PE, Perejon A, Criado JM, Dianez MJ, Perez-Maqueda LA (2010a) Kinetic model for thermal dehydrochlorination of poly(vinyl chloride). Polymer 51(17):3998–4007CrossRefGoogle Scholar
  41. Sanchez-Jimenez PE, Perez-Maqueda LA, Crespo-Amoros JE, Lopez J, Perejon A, Criado JM (2010b) Quantitative characterization of multicomponent polymers by sample-controlled thermal analysis. Anal Chem 82(21):8875–8880CrossRefGoogle Scholar
  42. Sanchez-Jimenez PE, Perez-Maqueda LA, Perejon A, Criado JM (2010c) A new model for the kinetic analysis of thermal degradation of polymers driven by random scission. Polym Degrad Stab 95(5):733–739CrossRefGoogle Scholar
  43. Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM (2011) Constant rate thermal analysis fot thermal stability studies of polymers. Polym Degrad Stab 96(5):974–981Google Scholar
  44. Sestak J, Berggren G (1971) Study of the kinetics of the mechanism of solid-state reactions at increased temperature. Thermochim Acta 3:1–12CrossRefGoogle Scholar
  45. Shen DK, Gu S (2009) The mechanism for thermal decomposition of cellulose and its main products. Bioresour Technol 100(24):6496–6504CrossRefGoogle Scholar
  46. Simha R, Wall LA (1952) Kinetics of chain depolymerization. J Phys Chem 56(6):707–715CrossRefGoogle Scholar
  47. Varhegyi G, Jakab E, Antal MJ (1994) Is the Broido-Shafizadeh model for cellulose true? Energy Fuels 8(6):1345–1352CrossRefGoogle Scholar
  48. Volker S, Rieckmann T (2002) Thermokinetic investigation of cellulose pyrolysis—impact of initial and final mass on kinetic results. J Anal Appl Pyrol 62(2):165–177CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Pedro E. Sánchez-Jiménez
    • 1
    Email author
  • Luis A. Pérez-Maqueda
    • 1
  • Antonio Perejón
    • 1
  • José Pascual-Cosp
    • 2
  • Mónica Benítez-Guerrero
    • 2
  • José M. Criado
    • 1
  1. 1.Instituto de Ciencia de Materiales de SevillaC.S.I.C.-Universidad de SevillaSevillaSpain
  2. 2.Departamento de Ingeniería Civil, Materiales y FabricaciónUniversidad de Málaga, ETSIIMálagaSpain

Personalised recommendations