Cellulose

, Volume 18, Issue 6, pp 1469–1479 | Cite as

Effect of alkylimidazolium based ionic liquids on the structure of UV-irradiated cellulose

  • Catalin Croitoru
  • Silvia Patachia
  • Attila Porzsolt
  • Christian Friedrich
Article

Abstract

In this paper, the influence of three alkylimidazolium-based ionic liquids with the same cation (1-ethyl-3-methylimidazolium) and different anions (chloride, tetrafluoroborate and hexafluorophosphate) on the structure and properties of cellulose, have been studied by using Fourier transform infrared spectroscopy measurements, fluorescence microscopy imaging, viscometric and methylene blue sorption tests. Cellulose treated with ionic liquids showed better stability to UV light, as demonstrated by the lower variations of the polymerization degree, carboxyl groups content, moisture index, crystallinity index, lateral order index and allomorph index, with the increase of the UV exposure period, by comparing to non-treated cellulose. The results show that the tested ionic liquids could be effective as “green” plasticizers and UV stabilizers for cellulose-based materials.

Keywords

Cellulose Ionic liquids UV degradation FTIR spectroscopy Fluorescence microscopy Mechanical tests 

Notes

Acknowledgments

This paper is supported by the Sectoral Operational Programme Human Resources Development (SOP HRD), financed from the European Social Fund and by the Romanian Government under the contract number POSDRU/89/1.5/S/59323. The purchasing of the ionic liquids has been funded by the National University Council from Romania (CNCSIS) through IDEI 839/2008 national grant.

References

  1. Asako H, Fumitaka H, Ryozo K (1987) Transformation of native cellulose crystals from cellulose Iβ to Iα through solid-state chemical reactions. Macromolecules 20(6):1440–1442Google Scholar
  2. Cristea MV, Riedl B, Blanchet P (2010) Enhancing the performance of exterior waterborne coatings for wood by inorganic nanosized UV absorbers. Prog Org Coat 69(4):432–441. doi: 10.1016/j.porgcoat.2010.08.006 CrossRefGoogle Scholar
  3. De la Orden MU, Urreaga JM (2006) Photooxidation of cellulose treated with amino compounds. Polym Degrad Stabil 91(9):2053–2060. doi: 10.1016/j.polymdegradstab.2006.01.013 CrossRefGoogle Scholar
  4. Debeljak M, Gregor-Svetec D (2010) Optical and color stability of aged specialty papers and ultraviolet cured ink jet prints. J Imag Sci Techn 54(6):060402–060409CrossRefGoogle Scholar
  5. Debzi EM, Chanzy H, Sugiyama J, Tekely P, Excoffier G (1991) The Iα → Iβ transformation of highly crystalline cellulose by annealing in various mediums. Macromolecules 24(26):6816–6822CrossRefGoogle Scholar
  6. Evans R, Newman RH, Roick UC, Suckling ID, Wallis AFA (1995) Changes in cellulose crystallinity during Kraft Pulping—comparison of infrared, X-Ray-diffraction and solid-state NMR results. Holzforschung 49(6):498–504CrossRefGoogle Scholar
  7. Fras L, Stana-Kleinschek K, Ribitsch V, Sfiligoj-Smole M, Kreze T (2002) Quantitative determination of carboxyl groups in cellulose by complexometric titration. Lenzinger Berichte 81:80–88Google Scholar
  8. Gambichler T, Hatch KL, Avermaete A, Bader A, Herde M, Altmeyer P, Hoffmann K (2002) Ultraviolet protection factor of fabrics: comparison of laboratory and field-based measurements. Photodermatol Photo 18(3):135–140CrossRefGoogle Scholar
  9. Gumuskaya E, Usta M, Kirci H (2003) The effects of various pulping conditions on crystalline structure of cellulose in cotton linters. Polym Degrad Stabil 81(3):559–564. doi: 10.1016/S0141-3910(03)00157-5 CrossRefGoogle Scholar
  10. Havermans JBGA, Dufour J (1997) Photo oxidation of paper documents—a literature review. Restaurator 18(3):103–114CrossRefGoogle Scholar
  11. He JX, Tang YY, Wang SY (2007) Differences in morphological characteristics of bamboo fibres and other natural cellulose fibres: studies on X-ray diffraction, solid state C-13-CP/MAS NMR, and second derivative FTIR spectroscopy data. Iran Polym J 16(12):807–818Google Scholar
  12. Horikawa Y, Clair B, Sugiyama J (2009) Varietal difference in cellulose microfibril dimensions observed by infrared spectroscopy. Cellulose 16(1):1–8. doi: 10.1007/s10570-008-9252-2 CrossRefGoogle Scholar
  13. Ibrahim M, Osman O (2009) Spectroscopic analyses of cellulose: Fourier transform infrared and molecular modelling study. J Comput Theor Nanos 6(5):1054–1058. doi: 10.1166/jctn.2009.1143 CrossRefGoogle Scholar
  14. Kamel S, Ali N, Jahangir K, Shah SM, El-Gendy AA (2008) Pharmaceutical significance of cellulose: a review. Express Polym Lett (11):758–778. doi: 10.3144/expresspolymlett.2008.90
  15. Kiguchi M, Evans PD (1998) Photostabilisation of wood surfaces using a grafted benzophenone UV absorber. Polym Degrad Stabil 61(1):33–45CrossRefGoogle Scholar
  16. Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry vol. I, fundamentals and analytical methods. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  17. Lam YL, Kan CW, Yuen CWM, Au CH (2011) Objective measurement of fabric properties of the plasma-treated cotton fabrics subjected to cocatalyzed wrinkle-resistant finishing. J Appl Polym Sci 119(5):2875–2884. doi: 10.1002/App.32965 CrossRefGoogle Scholar
  18. Marechal Y, Chanzy H (2000) The hydrogen bond network in I-beta cellulose as observed by infrared spectrometry. J Mol Struct 523:183–196CrossRefGoogle Scholar
  19. Marin N, Krzton A, Koch A, Robert D, Weber JV (1999) Infrared spectroscopy on thermal behavior of cellulose—II. Analysis in situ between 25 and 450 degrees C. J Therm Anal Calorim 55(3):765–772CrossRefGoogle Scholar
  20. Moharram MA, Mahmoud OM (2008) FTIR spectroscopic study of the effect of microwave heating on the transformation of cellulose I into cellulose II during mercerization. J Appl Polym Sci 107(1):30–36. doi: 10.1002/App.26748 CrossRefGoogle Scholar
  21. Nagel MCV, Heinze T (2010) Esterification of cellulose with acyl-1H-benzotriazole. Polym Bull 65(9):873–881. doi: 10.1007/s00289-010-0250-9 CrossRefGoogle Scholar
  22. O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207CrossRefGoogle Scholar
  23. Patachia S, Florea C, Friedrich C, Thomann Y (2009) Tailoring of poly(vinyl alcohol) cryogels properties by salts addition. Express Polym Lett 3(5):320–331. doi: 10.3144/expresspolymlett.2009.40 CrossRefGoogle Scholar
  24. Patachia S, Friedrich C, Florea C, Croitoru C (2011) Study of the PVA hydrogel behaviour in 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid. Express Polym Lett 5(2):197–207. doi: 10.3144/expresspolymlett.2011.18 CrossRefGoogle Scholar
  25. Pinkert A, Marsh KN, Pang SS (2010) Reflections on the solubility of cellulose. Ind Eng Chem Res 49(22):11121–11130. doi: 10.1021/Ie1006596 CrossRefGoogle Scholar
  26. Popescu CM, Popescu MC, Singurel G, Vasile C, Argyropoulos DS, Willfor S (2007) Spectral characterization of eucalyptus wood. Appl Spectrosc 61(11):1168–1177CrossRefGoogle Scholar
  27. Revol JF, Dietrich A, Goring AJ (1987) Effect of mercerization on the crystallite size and crystallinity index in cellulose from different sources. Can J Chem 65:1724–1725CrossRefGoogle Scholar
  28. Schnabelrauch M, Heinze T, Klemm D, Nehls I, Kotz J (1991) Investigations on synthesis and characterization of carboxy-groups containing cellulose sulfates. Polym Bull 27(2):147–153CrossRefGoogle Scholar
  29. Sturcova A, His I, Apperley DC, Sugiyama J, Jarvis MC (2004) Structural details of crystalline cellulose from higher plants. Biomacromolecules 5(4):1333–1339. doi: 10.1021/Bm034517p CrossRefGoogle Scholar
  30. Sun N, Rodriguez H, Rahman M, Rogers RD (2011) Where are ionic liquid strategies most suited in the pursuit of chemicals and energy from lignocellulosic biomass? Chem Commun 47(5):1405–1421. doi: 10.1039/C0cc03990j CrossRefGoogle Scholar
  31. Urreaga JM, de la Orden MU (2006) Chemical interactions and yellowing in chitosan-treated cellulose. Eur Polym J 42(10):2606–2616. doi: 10.1016/j.eurpolymj.2006.05.002 CrossRefGoogle Scholar
  32. Wang W, Lu R, Yu AC (2010) Low frequency spectrum of ionic liquid [bmim][PF6] studied by Femtosecond optically heterodyne-detected optical Kerr effect spectroscopy and low frequency Raman spectroscopy. Acta Phys-Chim Sin 26(4):964–970Google Scholar
  33. Wu B, Liu Y, Zhang Y, Wang H (2009) Probing intermolecular interactions in ionic liquid-water mixtures by near-infrared spectroscopy. Chemistry 15(28):6889–6893. doi: 10.1002/chem.200802742 CrossRefGoogle Scholar
  34. Yang CQ, Freeman JM (1991) Photooxidation of cotton cellulose studied by FT-IR photoacoustic-spectroscopy. Appl Spectrosc 45(10):1695–1698CrossRefGoogle Scholar
  35. Zervos S (2007) Accelerated ageing kinetics of pure cellulose paper after washing, alkalization and impregnation with methylcellulose. Restaurator 28(1):55–69CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Catalin Croitoru
    • 1
  • Silvia Patachia
    • 1
  • Attila Porzsolt
    • 1
  • Christian Friedrich
    • 2
  1. 1.Department of ChemistryTransilvania University of BrasovBrasovRomania
  2. 2.Albert-Ludwigs-Universität FreiburgFreiburgGermany

Personalised recommendations