Cellulose

, 18:1251 | Cite as

Immobilization of protein on cellulose hydrogel

  • Noriyuki Isobe
  • Da-Sol Lee
  • Ye-Jin Kwon
  • Satoshi Kimura
  • Shigenori Kuga
  • Masahisa Wada
  • Ung-Jin Kim
Article

Abstract

A technique of immobilizing an enzyme/antibody was developed using cellulose hydrogel prepared from an aqueous alkali-urea solvent. Partial oxidation by sodium periodate activated the cellulose gel for introducing aldehyde groups. Proteins were covalently introduced to cellulose gel by a Schiff base formation between the aldehyde and the amino groups of proteins, and stabilized by a reduction of imines. Coloring reactions confirmed the high activity of the immobilized enzymes. The activity of the immobilized enzymes increased with aldehyde content, but the effect leveled off at a low degree of oxidation, at approximately 8.1 of oxidized glucose/100 glucose unit. The amount of immobilized peroxidase calculated from the activity was 8.0 ng/g for an aldehyde content of 0.18 mmol/g: 14.6 ng/g for both 0.46 mmol/g and 1.04 mmol/g. The same method could be applied to the peroxidase antibody. Thus, various active proteins could be immobilized on cellulose gels by mild and facile processing. Owing to high mechanical and chemical stability of cellulose, this technique and resulting materials are potentially useful in biochemical processing and sensing technologies.

Keywords

Cellulose hydrogel Periodate oxidation Dialdehyde cellulose Immobilized enzyme Biomaterials 

References

  1. Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/Urea and NaOH/Urea aqueous solutions. Macromol Biosci 5:539–549CrossRefGoogle Scholar
  2. Cai J, Wang LX, Zhang LN (2007) Influence of coagulation temperature on pore size and properties of cellulose membranes prepared from NaOH-urea aqueous solution. Cellulose 14:205–215CrossRefGoogle Scholar
  3. Cai J, Kimura S, Wada M, Kuga S, Zhang L (2008) Cellulose Aerogels from aqueous alkali hydroxide–urea solution. ChemSusChem 1:149–154CrossRefGoogle Scholar
  4. Casu B, Naggi A, Torri G, Allegra G, Meille SV, Cosani A, Terbojevich M (1985) Stereoregular acyclic polyalcohols and polyacetates from cellulose and amylase. Macromolecules 18:2762–2767CrossRefGoogle Scholar
  5. Caygill RL, Blair GE, Millner PA (2010) A review on viral biosensors to detect human pathogens. Anal Chim Acta 681:8–15CrossRefGoogle Scholar
  6. Chauhan GS, Mahajan S, Sddiqui KM, Gupta RS (2004) Immobilization of lipase on hydrogels: Structural aspects of polymeric matrices as determinants of enzyme activity in different physical environments. J Appl Polym Sci 92:3135–3143CrossRefGoogle Scholar
  7. De Wael K, De Belder S, Van Vlierberghe S, Van Steenberge G, Dubruel P, Adriaens A (2010) Electrochemical study of gelatin as a matrix for the immobilization of horse heart cytochrome c. Talanta 82:1980–1985CrossRefGoogle Scholar
  8. Ishihara K, Goto Y, Takai M, Matsuno R, Inoue Y, Konno T (2011) Novel polymer biomaterials and interfaces inspired from cell membrane functions. Biochim Biophys Acta-Gen Subj 1810:268–275CrossRefGoogle Scholar
  9. Kalogeris E, Sanakis Y, Mammac D, Christakopoulos P, Kekos D, Stamatis H (2006) Properties of catechol 1, 2-dioxygenase from Pseudomonas putida immobilized in calcium alginate hydrogels. Enzyme Microb Technol 39:1113–1121CrossRefGoogle Scholar
  10. Kim UJ, Kuga S (2000) Reactive interaction of aromatic amines with dialdehyde cellulose gel. Cellulose 7:287–297CrossRefGoogle Scholar
  11. Kim UJ, Kuga S (2001a) Ion-exchange chromatography by dicarboxyl cellulose gel. J Chromatogr A 919:29–37CrossRefGoogle Scholar
  12. Kim UJ, Kuga S (2001b) Thermal decomposition of dialdehyde cellulose and its nitrogen-containing derivatives. Thermochim Acta 369:79–85CrossRefGoogle Scholar
  13. Kim UJ, Kuga S (2002a) Ion-exchange separation of proteins by polyallylamine-grafted cellulose gel. J Chromatogr A 955:191–196CrossRefGoogle Scholar
  14. Kim UJ, Kuga S (2002b) Polyallylamine-grafted cellulose gel as high-capacity anion-exchanger. J Chromatogr A 946:283–289CrossRefGoogle Scholar
  15. Kim UJ, Kuga S, Wada M, Okano T, Kondo T (2000a) Periodate oxidation of crystalline cellulose. Biomacromolecules 1:488–492CrossRefGoogle Scholar
  16. Kim UJ, Isobe N, Kimura S, Kuga S, Wada M, Ko JH, Jin HO (2010) Enzymatic degradation of oxidized cellulose hydrogels. Polym Degrad Stabil 95:2277–2280CrossRefGoogle Scholar
  17. Kimura S, Isobe N, Wada M, Kuga S, Ko JH, Kim UJ (2011) Enzymatic hydrolysis of chitosan-dialdehyde cellulose hydrogels. Carbohydr Polym 83:1850–1853CrossRefGoogle Scholar
  18. Kiyonaka S, Sada K, Yoshimura I, Shinkai S, Kato N, Hamachi I (2004) Semi-wet peptide/protein array using supramolecular hydrogel. Nat Mater 3:58–64CrossRefGoogle Scholar
  19. Kristiansen KA, Potthast A, Christensen BE (2010) Periodate oxidation of polysaccharides for modification of chemical and physical properties. Carbohydr Res 345:1264–1271CrossRefGoogle Scholar
  20. Liu K, Li XF, Li XM, He BH, Zhao GL (2010) Lowering the cationic demand caused by PGA in papermaking by solute adsorption and immobilized pectinase on chitosan beads. Carbohydr Polym 82:648–652CrossRefGoogle Scholar
  21. Maekawa E, Koshijima T (1984) Properties of 2, 3-dicarboxy cellulose combined with various metallic-ions. J Appl Polym Sci 29:2289–2297CrossRefGoogle Scholar
  22. Park HJ, Khang YH (1995) Production of cephalosporin C by immobilized Cephalosporium acremonium in polyethyleneimine-modified barium alginate. Enzyme Microb Technol 17:408–412CrossRefGoogle Scholar
  23. Tardioli PW, Zanin GM, de Moraes FF (2006) Characterization of Thermoanaerobacter cyclomaltodextrin glucanotransferase immobilized on glyoxyl-agarose. Enzyme Microb Technol 39:1270–1278CrossRefGoogle Scholar
  24. Varavinit S, Chaokasem N, Shobsngob S (2001) Covalent immobilization of a glucoamylase to bagasse dialdehyde cellulose. World J Microbiol Biotechnol 17:721–725CrossRefGoogle Scholar
  25. Villalonga R, Villalonga ML, Gomez L (2000) Preparation and functional properties of trypsin modified by carboxymethylcellulose. J Mol Catal B-Enzym 10:483–490CrossRefGoogle Scholar
  26. Weber V, Linsberger I, Ettenauer M, Loth F, Höyhtyä M, Falkenhagen D (2005) Development of specific adsorbents for human tumor necrosis factor-α: Influence of antibody immobilization on performance and biocompatibility. Biomacromolecules 6:1864–1870CrossRefGoogle Scholar
  27. Zhou J, Chang C, Zhang R, Zhang L (2007) Hydrogels prepared from unsubstituted cellulose in NaOH/Urea aqueous solution. Macromol Biosci 7:804–809CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Noriyuki Isobe
    • 1
  • Da-Sol Lee
    • 2
  • Ye-Jin Kwon
    • 2
  • Satoshi Kimura
    • 1
    • 2
  • Shigenori Kuga
    • 1
  • Masahisa Wada
    • 1
    • 2
  • Ung-Jin Kim
    • 2
    • 3
  1. 1.Department of Biomaterials Science, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
  2. 2.Department of Plant and Environmental New Resources, College of Life SciencesKyung Hee UniversityYongin-siRepublic of Korea
  3. 3.Bioenergy Research Center, College of Life SciencesKyung Hee UniversityYongin-siRepublic of Korea

Personalised recommendations