, Volume 18, Issue 3, pp 595–605 | Cite as

Surface only modification of bacterial cellulose nanofibres with organic acids

  • Koon-Yang Lee
  • Franck Quero
  • Jonny J. Blaker
  • Callum A. S. Hill
  • Stephen J. Eichhorn
  • Alexander BismarckEmail author


Bacterial cellulose (BC) nanofibres were modified only on their surface using an esterification reaction with acetic acid, hexanoic acid or dodecanoic acid. This reaction rendered the extremely hydrophilic surfaces of BC nanofibres hydrophobic. The hydrophobicity of BC increased with increasing carbon chain length of the organic acids used for the esterification reaction. Streaming (zeta-) potential measurements showed a slight shift in the isoelectric point and a decrease in ζplateau was also observed after the esterification reactions. This was attributed to the loss of acidic functional groups and increase in hydrophobicity due to esterification of BC with organic acids. A method based on hydrogen/deuterium exchange was developed to evaluate the availability of surface hydroxyl groups of neat and modified BC. The thermal degradation temperature of modified BC sheets decreased with increasing carbon chain length of the organic acids used. This is thought to be a direct result of the esterification reaction, which significantly reduces the packing efficiency of the nanofibres because of a reduction in the number of effective hydrogen bonds between them.


Bacterial cellulose Surface modification and characterisation Organic acid esterification Zeta-potential Dynamic vapour sorption 



The authors greatly acknowledge the funding provided by the UK Engineering and Physical Science Research Council (EPSRC) for KYL (EP/F032005/1), FQ (EP/F028946/1) and the Challenging Engineering Programme of the EPSRC (EP/E007538/1) for JJB.

Supplementary material

10570_2011_9525_MOESM1_ESM.doc (686 kb)
Supplementary material 1 (DOC 686 kb)


  1. Baltazar-y-Jimenez A, Bistritz M, Schulz E, Bismarck A (2008a) Atmospheric air pressure plasma treatment of lignocellulosic fibres: Impact on mechanical properties and adhesion to cellulose acetate butyrate. Comp Sci Tech 68(1):215–227CrossRefGoogle Scholar
  2. Baltazar-y-Jimenez A, Juntaro J, Bismarck A (2008b) Effect of atmospheric air pressure plasma treatment on the thermal behaviour of natural fibres and dynamical mechanical properties of randomly-oriented short fibre composites. J Biobased Mater Bioenergy 2(3):264–272CrossRefGoogle Scholar
  3. Belton PS, Tanner SF, Cartier N, Chanzy H (1989) High-resolution solid-state C-13 nuclear magnetic-resonance spectroscopy of tunicin, an animal cellulose. Macromolecules 22(4):1615–1617CrossRefGoogle Scholar
  4. Berlioz S, Molina-Boisseau S, Nishiyama Y, Heux L (2009) Gas-phase surface esterification of cellulose microfibrils and whiskers. Biomacromolecules 10(8):2144–2151CrossRefGoogle Scholar
  5. Bismarck A (2008) Are hierarchical composite structures the way forward to improve the properties of truly green composites? Express Polym Lett 2(10):687CrossRefGoogle Scholar
  6. Bismarck A, Mishra S, Lampke T (2005) Plant fibers as reinforcement for green composites. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers, biopolymers and biocomposites, 1st edn. CRC Press, Boca RatonGoogle Scholar
  7. Blaker JJ, Lee KY, Li XX, Menner A, Bismarck A (2009) Renewable nanocomposite polymer foams synthesized from Pickering emulsion templates. Green Chem 11(9):1321–1326CrossRefGoogle Scholar
  8. Callies M, Quere D (2005) On water repellency. Soft Matter 1(1):55–61CrossRefGoogle Scholar
  9. Chanliaud E, Burrows KM, Jeronimidis G, Gidley MJ (2002) Mechanical properties of primary plant cell wall analogues. Planta 215(6):989–996CrossRefGoogle Scholar
  10. Cichocki FR, Thomason JL (2002) Thermoelastic anisotropy of a natural fiber. Comp Sci Tech 62(5):669–678CrossRefGoogle Scholar
  11. Czaja W, Romanovicz D, Brown RM (2004) Structural investigation of microbial cellulose produced in stationary and agitated culture. Cellulose 113–4:403–411CrossRefGoogle Scholar
  12. Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8(1):1–12CrossRefGoogle Scholar
  13. Eichhorn SJ, Davies GR (2006) Modelling the crystalline deformation of native and regenerated cellulose. Cellulose 13(3):291–307CrossRefGoogle Scholar
  14. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33CrossRefGoogle Scholar
  15. Freire CSR, Silvestre AJD, Neto CP, Belgacem MN, Gandini A (2006) Controlled heterogeneous modification of cellulose fibers with fatty acids: effect of reaction conditions on the extent of esterification and fiber properties. J Appl Polym Sci 100(2):1093–1102CrossRefGoogle Scholar
  16. Frilette VJ, Hanle J, Mark H (1948) Rate of exchange of cellulose with heavy water. J Amer Chem Soc 70(3):1107–1113CrossRefGoogle Scholar
  17. Gardner DJ, Oporto GS, Mills R, Samir MASA (2008) Adhesion and surface issues in cellulose and nanocellulose. J Adhesion Sci Technol 22(5–6):545–567CrossRefGoogle Scholar
  18. Gindl W, Keckes J (2004) Tensile properties of cellulose acetate butyrate composites reinforced with bacterial cellulose. Comp Sci Tech 64(15):2407–2413CrossRefGoogle Scholar
  19. Goussé C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43(9):2645–2651CrossRefGoogle Scholar
  20. Hsieh YC, Yano H, Nogi M, Eichhorn SJ (2008) An estimation of the young’s modulus of bacterial cellulose filaments. Cellulose 15(4):507–513CrossRefGoogle Scholar
  21. Hunter RJ (1993) Introduction to modern colloid science. Oxford University Press Inc., New YorkGoogle Scholar
  22. Ifuku S, Nogi M, Kentaro A, Keishin H, Nakatsubo F, Yano H (2007) Surface modification of bacterial cellulose nanofibers for property enhancement of optical transparent composites: dependence on acetyl-group DS. Biomacromolecules 8(6):1937–1978CrossRefGoogle Scholar
  23. Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35(2):261–270CrossRefGoogle Scholar
  24. Ilharco LM, Gracia RR, daSilva JL, Ferreira LFV (1997) Infrared approach to the study of adsorption on cellulose: influence of cellulose crystallinity on the adsorption of benzophenone. Langmuir 13(15):4126–4132CrossRefGoogle Scholar
  25. Jandura P, Riedl B, Kokta BV (2000) Thermal degradation behavior of cellulose fibers partially esterified with some long chain organic acids. Polym Degrad Stab 70(3):387–394CrossRefGoogle Scholar
  26. Juntaro J (2009) Environmentally friendly hierarchical composites. PhD Thesis, Imperial College London, LondonGoogle Scholar
  27. Juntaro J, Pommet M, Mantalaris A, Shaffer M, Bismarck A (2007) Nanocellulose enhanced interfaces in truly green unidirectional fibre reinforced composites. Compos Interfaces 14(7–9):753–762CrossRefGoogle Scholar
  28. Juntaro J, Pommet M, Kalinka G, Mantalaris A, Shaffer MSP, Bismarck A (2008) Creating hierarchical structures in renewable composites by attaching bacterial cellulose onto sisal fibers. Adv Mater 20(16):3122–3126CrossRefGoogle Scholar
  29. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393CrossRefGoogle Scholar
  30. Lee K-Y, Blaker JJ, Bismarck A (2009) Surface functionalisation of bacterial cellulose as the route to produce green polylactide nanocomposites with improved properties. Comp Sci Tech 69(15–16):2724–2733CrossRefGoogle Scholar
  31. Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15(1):25–33CrossRefGoogle Scholar
  32. Mathew AP, Oksman K, Sain M (2005) The effect of morphology and chemical characteristics of cellulose reinforcements on the crystallinity of polylactic acid. J Appl Polym Sci 101(1):300–310CrossRefGoogle Scholar
  33. Nakagaito AN, Fujimura A, Sakai T, Hama Y, Yano H (2009) Production of microfibrillated cellulose (MFC)-reinforcced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process. Comp Sci Techn 69(7–8):1293–1297CrossRefGoogle Scholar
  34. Nishi Y, Uryu M, Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S (1990) The structure and mechanical properties of sheets prepared from bacterial cellulose. 2. Improvement of the mechancial properties of sheets and their applicability to diaphragms of electroacoustic transducers. J Mater Sci 25(6):2997–3001CrossRefGoogle Scholar
  35. Nishino T, Matsuda I, Hirao K (2004) All-cellulose composites. Macromolecules 37(20):7683–7687CrossRefGoogle Scholar
  36. Nishiyama Y, Isogai A, Okano T, Muller M, Chanzy H (1999) Intracrystalline deuteration of native cellulase. Macromolecules 32(6):2078–2081CrossRefGoogle Scholar
  37. Nogi M, Abe K, Handa K, Nakatsubo F, Ifuku S, Yano H (2006) Property enhancement of optical transparent bionanofiber composites by acetylation. Appl Phys Lett 89(23):233123CrossRefGoogle Scholar
  38. Olah A, Hillborg H, Vancso GJ (2005) Hydrophobic recovery of UV/ozone treated poly(dimethylsiloxane): adhesion studies by contact mechanics and mechanism of surface modification. Appl Surf Sci 239(3–4):410–423CrossRefGoogle Scholar
  39. Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56(10):978CrossRefGoogle Scholar
  40. Pedersen NR, Wimmer R, Emmersen J, Degn P, Pedersen LH (2002) Effect of fatty acid chain length on initial reaction rates and regioselectivity of lipase-catalysed esterification of disaccharides. Carbohydr Res 337(13):1179–1184CrossRefGoogle Scholar
  41. Pommet M, Juntaro J, Heng JYY, Mantalaris A, Lee AF, Wilson K, Kalinka G, Shaffer MSP, Bismarck A (2008) Surface modification of natural fibers using bacteria: depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites. Biomacromolecules 9(6):1643–1651CrossRefGoogle Scholar
  42. Radiman C, Yulianil G (2008) Coconut water as a potential resource for cellulose acetate membrane preparation. Polym Int 57(3):502–508CrossRefGoogle Scholar
  43. Reiling S, Brickmann J (1995) Theoretical investigations on the structure and physical-properties of cellulose. Macromol Theory Simul 4(4):725–743CrossRefGoogle Scholar
  44. Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38(7):2046–2064CrossRefGoogle Scholar
  45. Samir M, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626CrossRefGoogle Scholar
  46. Schlufter K, Schmauder HP, Dorn S, Heinze T (2006) Efficient homogeneous chemical modification of bacterial cellulose in the ionic liquid 1-N-butyl-3-methylimidazolium chloride. Macromol Rapid Commun 27(19):1670–1676CrossRefGoogle Scholar
  47. Sczostak A (2009) Cotton linters: an alternative cellulosic raw material. Macromol Symp 280:45–53CrossRefGoogle Scholar
  48. Segal L, Creely JJ, Martin-Jr AE, Conrad CM (1959) An emperical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794CrossRefGoogle Scholar
  49. Suetsugu M, Kotera M, Nishino T (2009) Cellulosic nanocomposite prepared by acetylation of bacterial cellulose using supercritical carbon dioxide. In: Conference proceedings of the 17th international conference of composite materials, Edinburgh, 2009Google Scholar
  50. Sugiyama J, Vuong R, Chanzy H (1991) Electron-diffraction study on the 2 crystalline phases occurring in native cellulose from an algal cell-wall. Macromolecules 24(14):4168–4175CrossRefGoogle Scholar
  51. Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Comp Sci Tech 69(7–8):1187–1192CrossRefGoogle Scholar
  52. Thomason JL (2009) Why are natural fibres failing to deliver on composite performance? In: Conference proceedings of the 17th international conference of composite materials, Edinburgh, 2009Google Scholar
  53. Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Stahl K (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12(6):563–576CrossRefGoogle Scholar
  54. Toyosaki H, Naritomi T, Seto A, Matsuoka M, Tsuchida T, Yoshinaga F (1996) Screening of bacterial cellulose-producing Acetobacter strains suitable for agitated culture. Biosci Biotech Biochem 59(8):1498–1502CrossRefGoogle Scholar
  55. van den Berg O, Capadona JR, Weder C (2007) Preparation of homogeneous dispersions of tunicate cellulose whiskers in organic solvents. Biomacromolecules 8(4):1353–1357CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Koon-Yang Lee
    • 1
  • Franck Quero
    • 2
  • Jonny J. Blaker
    • 1
  • Callum A. S. Hill
    • 3
  • Stephen J. Eichhorn
    • 2
  • Alexander Bismarck
    • 1
    Email author
  1. 1.Polymer and Composite Engineering (PaCE) Group, Department of Chemical EngineeringImperial College LondonLondonUK
  2. 2.Material Sciences Centre, School of Materials and the Northwest Composite CentreUniversity of ManchesterManchesterUK
  3. 3.Centre for Timber EngineeringNapier UniversityEdinburghUK

Personalised recommendations