, Volume 18, Issue 3, pp 749–758 | Cite as

Observing Thermobifida fusca cellulase binding to pretreated wood particles using time-lapse confocal laser scanning microscopy

  • Paul Zhu
  • Jose M. Moran-Mirabal
  • Jeremy S. Luterbacher
  • Larry P. Walker
  • Harold G. CraigheadEmail author


We report on studies of Thermobifida fusca cellulases Cel5A, Cel6B and Cel9A binding to pretreated wood particles using Confocal Laser Scanning Microscopy (CLSM). Hydro-thermal pretreated wood particles were immobilized on borosilicate substrates before fluorescently-labeled cellulase solutions at various concentrations were added. Time-lapse CLSM revealed that cellulases Cel5A, Cel6B and Cel9A quickly bound to certain areas of wood particles, slowly diffused into and adsorbed to less accessible areas, but showed little affinity for other areas of the wood. Cellulase-to-substrate association constants were estimated using a transient enzyme binding kinetics model, and were found to be in agreement with published values. In order to accurately account for the fluorescence signal of labeled enzyme mixed with wood autofluorescence, we also developed a spectral deconvolution method to separate signals from multiple fluorochromes.


CLSM Cellulose Enzyme binding kinetics Transient model 



Borafloat wafers were micro-patterned at the Cornell Nanoscale Science and Technology Facility, a member of the National Nanotechnology Infrastructure Network, which is supported by the National Science Foundation (Grant ECS-0335765). This research was funded by Department Of Energy Contract GO18084. This research made use of the Biofuel Research Laboratories at Cornell University, which was funded by the New York State Foundation for Science, Technology and Innovation.

Supplementary material

10570_2011_9506_MOESM1_ESM.pdf (387 kb)
PDF (388 KB)


  1. Bothwell M, Wilson D, Irwin D, Walker L (1997) Binding reversibility and surface exchange of Thermomonospora fuscs \(\hbox{E}_{3}\) and E 5 and Trichoderma reesei CBHI. Enzym Microbial Technol 20:411–417CrossRefGoogle Scholar
  2. Browning, BL (ed) (1963) The chemistry of wood. Wiley, New YorkGoogle Scholar
  3. Chanzy H, Henrissat B, Vuong R (1984) Colloidal gold labelling of 1,4-β-d-glucan cellobiohydrolase adsorbed on cellulose substrates. FEBS Lett 172:193–197CrossRefGoogle Scholar
  4. Galbe M, Eklund R, Zacchi G (1990) Adsorption of cellulases on steam-pretreated willow. Appl Biochem Biotech 24(25):87–101CrossRefGoogle Scholar
  5. Ha T (2001) Single-molecule fluorescence resonance energy transfer. Methods Biochem Anal 25:78–86Google Scholar
  6. Jeoh T, Wilson D, Walker LP (2002) Cooperative and competitive binding in synergistic mixtures of Thermobifida fusca cellulases cel5a, cel6b, and cel9a. Biotechnol Prog 18(4):760–769CrossRefGoogle Scholar
  7. Jervis EJ, Haynes CA, Kilburn DG (1997) Surface diffusion of cellulases and their isolated binding domains on cellulose. J Biol Chem 272(38):24016–24023CrossRefGoogle Scholar
  8. Johnson KA (2005) Enzyme kinetics: transient phase. In: Encyclopedia of life sciences. Wiley, New YorkGoogle Scholar
  9. Jung E, Lao G, Irwin D, Barr B, Benjamin A, Wilson D (1993) Dna-sequences and expression in Streptomyces lividans of an exoglucanase gene and an endoglucanase gene from Thermomonospora fusca. Appl Environ Microbiol 59(9):3032–3043Google Scholar
  10. Jung H, Wilson DB, Walker LP (2002a) Binding mechanisms for Thermomonospora fusca Cel5A, Cel6B, and Cel48A cellulose-binding modules on bacterial microcrystalline cellulose. Biotechnol Bioeng 80(4):380–392CrossRefGoogle Scholar
  11. Jung H, Wilson DB, Walker LP (2002b) Binding of Thermomonospora fusca \({CD}_{Cel5A},\,{CD}_{Cel6B}\), and CD Cel48A to easily hydrolysable and recalcitrant cellulose fractions on BMCC. Enzym Microbial Technol 31(7):941–948CrossRefGoogle Scholar
  12. Jung H, Wilson DB, Walker LP (2003) Binding and reversibility of Thermomonospora fusca Cel5A, Cel6B, and Cel48A and their respective catalytic domains to bacterial microcrystalline cellulose. Biotechnol Bioeng 84(2):151–159CrossRefGoogle Scholar
  13. Kim DW, Kim TS, Jeong YK, Lee JK (1992) Adsorption kinetics and behaviors of cellulase components on microcrystalline cellulose. J Ferment Bioeng 73:461–466CrossRefGoogle Scholar
  14. Li K, Reeve DW (2004) Fluorescent labeling of lignin in the wood pulp fiber wall. J Wood Chem Technol 24(2):169–181CrossRefGoogle Scholar
  15. Lundquist K, Josefsson B, Nyquist G (1978) Analysis of lignin products by fluorescence spectroscopy. Holzforschung 32:27–32CrossRefGoogle Scholar
  16. Luterbacher JS, Tester J, Walker L (2010) High-solids biphasic co2-h2o pretreatment of lignocellulosic biomass. Biotechnol Bioeng 107:451–460CrossRefGoogle Scholar
  17. Lykidis A, Mavromatis K, Ivanova N, Anderson I, Land M, DiBartolo G, Martinez M, Lapidus A, Lucas S, Copeland A, Richardson P, Wilson D, Kyrpides N (2007) Genome sequence and analysis of the soil cellulolytic actinomycete Thermobifida fusca yx. J Bacteriol 189(6):2477–2486CrossRefGoogle Scholar
  18. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577CrossRefGoogle Scholar
  19. Medve J, Ståhlberg J, Tjerneld F (1997) Isotherms for adsorption of cellobiohydrolase i and ii from Trichoderma reesei on microcrystalline cellulose. Appl Biochem Biotechnol 66:39–56CrossRefGoogle Scholar
  20. Moran-Mirabal J, Corgie S, Bolewski J, Smith H, Cipriany B, Craighead H, Walker L (2009) Labeling and purification of cellulose-binding proteins for high resolution fluorescence applications. Anal Chem 81:7981–7987CrossRefGoogle Scholar
  21. Moran-Mirabal JM, Santhanam N, Corgie SC, Craighead HG, Walker LP (2008) Immobilization of cellulose fibrils on solid substrates for cellulose-binding studies through quantitative fluorescence microscopy. Biotechnol Bioeng 101(6):1129–1141CrossRefGoogle Scholar
  22. Oliveira OV, Freitas LCG, Straatsma TP, Lins RD (2008) Interaction between the cbm of cel9a from Thermobifida fusca and cellulose fibers. J Mol Recognit 22(1):38–45CrossRefGoogle Scholar
  23. Ooshima H, Sakata M, Harano Y (1983) Adsorption of cellulase from trichoderma viride on cellulose. Biotechnol Bioeng 25(12):3103–3114CrossRefGoogle Scholar
  24. Roughton FJW (1959) Diffusion and simultaneous chemical reaction velocity in haemoglobin solutions and red cell suspensions. Prog Biophys Biophys Chem 9:55–104Google Scholar
  25. Saxena IM, Brown R (2005) Cellulose biosynthesis: current views and evolving concepts. Ann Bot 96:9–21CrossRefGoogle Scholar
  26. Ståhlberg J, Johansson G, Pettersson G (1991) A new model for enzymatic hydrolysis of cellulose based on the two-domain structure of cellobiohydrolase I. Nat Biotechnol 9:286–290CrossRefGoogle Scholar
  27. Wilson DB (2008) Three microbial strategies for plant cell wall degradation. Ann N Y Acad Sci 1125:289–297CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Paul Zhu
    • 1
  • Jose M. Moran-Mirabal
    • 2
  • Jeremy S. Luterbacher
    • 3
  • Larry P. Walker
    • 2
  • Harold G. Craighead
    • 1
    Email author
  1. 1.Applied Engineering & PhysicsCornell UniversityIthacaUSA
  2. 2.Biological & Environmental EngineeringCornell UniversityIthacaUSA
  3. 3.Chemical & Biomolecular EngineeringCornell UniversityIthacaUSA

Personalised recommendations