Cellulose

, Volume 18, Issue 1, pp 167–177

Sol–gel treatments for enhancing flame retardancy and thermal stability of cotton fabrics: optimisation of the process and evaluation of the durability

Article

Abstract

Cotton fabrics have been treated by sol–gel processes in order to create a silica compact coating on the fibres to enhance their thermal stability and flame retardancy. The effect of process parameters such as silica precursor:water molar ratio and drying conditions (temperature and time) has been thoroughly investigated, aiming at optimization of target properties. Thermogravimetry and cone calorimetry have been respectively used to assess thermal stability and combustion behaviour of treated fabrics. Coating durability to different washing programmes has been evaluated as well.

Keywords

Cotton Sol–gel processes Silica Flame retardancy Thermal stability, durability 

References

  1. Abidi N, Hequet E, Tarimala S, Dai LL (2007) Cotton fabric surface modification for improved UV radiation protection using sol–gel process. J Appl Polym Sci 104:111–117CrossRefGoogle Scholar
  2. Aksit AC, Onar N (2008) Leaching and fastness behavior of cotton fabrics dyed with different type of dyes using sol–gel process. J Appl Polym Sci 109:97–105CrossRefGoogle Scholar
  3. Alongi J, Ciobanu M, Carosio F, Malucelli G (2011) Investigation on thermal stability and flame retardancy of polyester, cotton and relative blend textile fabrics subjected to sol–gel treatments. J Appl Polym Sci 119:1961–1969CrossRefGoogle Scholar
  4. Cireli A, Onar N, Ebeoglugil MF, Kayatekin I, Kutlu N, Culha O, Celik E (2007) Development of flame retardancy properties of new halogen-free phosphorous doped Sio2 thin films on fabrics. J Appl Polym Sci 105:3747–3756CrossRefGoogle Scholar
  5. Drevell C, Lefebvre J, Duquesne S, Le Bras M, Poutch F, Vouters M, Magniez C (2005) Thermal and fire behaviour of ammonium polyphosphate/acrylic coated cotton/PESFR fabric. Polym Degrad Stab 88:130–137CrossRefGoogle Scholar
  6. Gaan S, Sun G (2007) Effect of phosphorus and nitrogen on flame retardant cellulose: a study of phosphorus compounds. J Anal Appl Pyrolysis 78:371–377CrossRefGoogle Scholar
  7. Hebeish A, Nasr HI, Abdou LA, Sheltaw ST (1986) Effect of structural changes of cotton by acid hydrolysis and crosslinking on soiling and soil release. J Appl Polym Sci 31:197–208CrossRefGoogle Scholar
  8. Horrocks AR (2000) Textiles. In: Horrocks AR, Price DP (eds) Fire retardant materials. CRC Press, Boca Raton, pp 128–178Google Scholar
  9. Horrocks AR, Kandola BK (1998) Flame retardant cellulosic textiles. In: Le Bras M, Camino G, Bourbigot S, Delobel R (eds) Fire retardancy of polymers. The use of intumescence. The Royal Society of Chemistry, Cambridge, pp 343–362Google Scholar
  10. Horrocks AR, Price D, Akalin M (1996) FTIR analysis of gases evolved from cotton and flame retarded cotton fabrics pyrolysed in air. Polym Degrad Stab 52:205–213CrossRefGoogle Scholar
  11. Huang KS, Nien YH, Hsiao KC, Chang YS (2006) Application of DMEU/SiO2 gel solution in the antiwrinkle finishing of cotton fabrics. J Appl Polym Sci 102:4136–4143CrossRefGoogle Scholar
  12. Lecoeur E, Vroman I, Bourbigot S, Lam TM, Delobel R (2001) Flame retardant formulations for cotton. Polym Degrad Stab 74:487–492CrossRefGoogle Scholar
  13. Li FY, Xing YJ, Ding X (2007) Immobilization of papain on cotton fabric by sol–gel method. Enzyme Microb Technol 40:1692–1697CrossRefGoogle Scholar
  14. Li F, Xing Y, Ding X (2008) Silica xerogel coating on the surface of natural and synthetic fabrics. Surf Coat Technol 202:4721–4727CrossRefGoogle Scholar
  15. Liu YL, Hsiu GH, Chiu YS, Jeng RJ, Ma H (1996) Synthesis and flame-retardant properties of phosphorus-containing polymers based on poly(4-hydroxystyrene). J Anal Appl Pyrolysis 59:1619–1625Google Scholar
  16. Mahltig B, Bottcher H (2003) Modified silica sol coatings for water-repellent textiles. J Sol–Gel Sci Technol 27:43–52CrossRefGoogle Scholar
  17. Mahltig B, Textor T (2006) Combination of silica sol and dyes on textiles. J Appl Polym Sci 39:111–118Google Scholar
  18. Mahltig B, Fiedler D, Bottcher H (2004) Antimicrobial sol–gel coatings. J Appl Polym Sci 32:219–222Google Scholar
  19. Price D, Horrocks AR, Akalin M, Faroq AA (1997) Influence of flame retardants on the mechanism of pyrolysis of cotton (cellulose) fabrics in air. J Anal Appl Pyrolysis 40(41):511–524CrossRefGoogle Scholar
  20. Reddy PRA, Agathian G, Kumar A (2005) Ionizing radiation graft polymerized and modified flame retardant cotton fabric. Radiat Phys chem 72:511–516CrossRefGoogle Scholar
  21. Schartel B, Bartholmai M, Knoll U (2006) Some comments on the main fire retardancy mechanisms in polymer nanocomposites. Polym Adv Technol 17:772–776CrossRefGoogle Scholar
  22. Schnipper A, Smith-Hansen L, Thomasen ES (1995) Reduced combustion efficiency of chlorinated compounds, resulting in higher yields of carbon monoxide. Fire Mater 19:61–64CrossRefGoogle Scholar
  23. Sekiguchi Y, Shafizadeh F (1984) The effect of inorganic additives on the formation, composition, and combustion of cellulosic char. J Appl Polym Sci 29:1267–1286CrossRefGoogle Scholar
  24. Sequeira S, Evtuguin DV, Portugal I, Esculcas AP (2007) Synthesis and characterisation of cellulose/silica hybrids obtained by heteropoly acid catalysed sol–gel process. Mater Sci Eng C 27:172–179CrossRefGoogle Scholar
  25. Siriviriyanun A, O’Rear EA, Yanumet N (2008) Improvement in the flame retardancy of cotton fabric by admicellar polymerization of 2-acryloyloxyethyl diethyl phosphate using an anionic surfactant. J Appl Polym Sci 109:3859–3866CrossRefGoogle Scholar
  26. Tata J, Alongi J, Carosio F, Frache A (2010) Optimization of the procedure to burn textile fabrics by cone calorimeter: Part I. Combustion behaviour of polyester. Fire Mater. doi:10.1002/fam.1061, in press
  27. Tsafack MJ, Grutzmacher L (2006) Plasma-induced graft-polymerization of flame retardant monomers onto PAN fabrics. Surf Coat Technol 200:3503–3510CrossRefGoogle Scholar
  28. Xing YJ, Ding X (2007a) UV photo-stabilization of tetrabutyl titanate for aramid fibers via sol–gel surface modification. J Appl Polym Sci 103:3113–3119CrossRefGoogle Scholar
  29. Xing YJ, Yang XJ, Dai JJ (2007b) Antimicrobial finishing of cotton textile based on water glass by sol–gel method. J Sol-Gel Sci Technol 43:187–192CrossRefGoogle Scholar
  30. Xue CH, Ji ST, Chen HZ, Wang M (2008) Superhydrophobic cotton fabrics prepared by sol–gel coating of TiO2 and surface hydrophobization. Sci Technol Adv Mater 9:1–5Google Scholar
  31. Yaman N (2009) Preparation and flammability properties of hybrid materials containing phosphorous compounds via sol–gel process. Fibers Polym 10:413–418CrossRefGoogle Scholar
  32. Yu Y, Chen Y, Chen WC (2003) Synthesis and characterization of organic-inorganic hybrid thin films from poly(acrylic) and nanodispersed colloidal silica. Polymer 44:593–601CrossRefGoogle Scholar
  33. Yu M, Gu G, Meng WD, Qing FL (2007) Superhydrophobic cotton fabric coating based on a complex layer of silica nanoparticles and perfluorooctylated quaternary ammonium silane coupling agent. Appl Surf Sci 253:3669–3673CrossRefGoogle Scholar
  34. Zhu P, Sui S, Wang B, Sun K, Sun G (2004) A study of pyrolysis and pyrolysis products of flame-retardant cotton fabrics by DSC, TGA, and PY–GC–MS. J Anal Appl Pyrolysis 71:645–655CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Jenny Alongi
    • 1
  • Mihaela Ciobanu
    • 1
  • Giulio Malucelli
    • 1
  1. 1.Dipartimento di Scienza dei Materiali e Ingegneria Chimica, Politecnico di Torino, sede di AlessandriaAlessandriaItaly

Personalised recommendations