Cellulose

, Volume 17, Issue 6, pp 1045–1065 | Cite as

Turning polysaccharides into hydrophobic materials: a critical review. Part 2. Hemicelluloses, chitin/chitosan, starch, pectin and alginates

Article

Abstract

This survey constitutes the second part of a comprehensive review, whose purpose is to provide a reasoned perspective on the field related to the preparation of new polysaccharide-based hydrophobic materials by scrutinizing the actual state of its art. After dealing with the major topic of cellulose hydrophobization in the first part, attention is now turned to the other important members of the polysaccharide families, namely hemicelluloses, chitin/chitosan, starch, pectin and alginates. Publications dealing with both chemical and physical treatments aimed at inducing a substantial increase in the hydrophobic character of their surface are critically examined within the broader context of the elaboration of novel materials based on renewable resources as a viable alternative to their fossil-based counterparts.

Keywords

Hydrophobicity Polysaccharides Hemicelluloses Chitin/chitosan Starch Pectin Alginates 

References

  1. Aburto J, Thiebaud S, Alric I, Borredon E, Bikiaris D, Prinos J, Panayiotou C (1997) Properties of octanoated starch and its blends with polyethylene. Carbohydr Polym 34(1–2):101–112CrossRefGoogle Scholar
  2. Aburto J, Hamaili H, Baziard GM, Senocq F, Alric I, Borredon E (1999) Free-solvent synthesis and properties of higher fatty esters of starch—Part 2. Starch Starke 51(8–9):302–307CrossRefGoogle Scholar
  3. Amaral IF, Granja PL, Melo LV, Saramago B, Barbosa MA (2006) Functionalization of chitosan membranes through phosphorylation: atomic force microscopy, wettability, and cytotoxicity studies. J Appl Polym Sci 102(1):276–284CrossRefGoogle Scholar
  4. Avérous L, Halley PJ (2009) Biocomposites based on plasticized starch. Biofuel Bioprod Biorefin 3(3):329–343CrossRefGoogle Scholar
  5. Barikani M, Mohammadi M (2007) Synthesis and characterization of starch-modified polyurethane. Carbohydr Polym 68(4):773–780CrossRefGoogle Scholar
  6. Bastos DC, Santos AEF, Silva MLVJd, Simão RA (2009) Hydrophobic corn starch thermoplastic films produced by plasma treatment. Ultramicroscopy 109(8):1089–1093CrossRefGoogle Scholar
  7. Bhattarai N, Zhang M (2007) Controlled synthesis and structural stability of alginate-based nanofibers. Nanotechnology 18(45):455601CrossRefGoogle Scholar
  8. Brownlee IA, Allen A, Pearson JP, Dettmar PW, Havler ME, Atherton MR, Onsøyen E (2005) Alginate as a source of dietary fiber. Crit Rev Food Sci 45(6):497–510CrossRefGoogle Scholar
  9. Bu H, Nguyen GTM, Kjøniksen A-L (2006) Effects of the quantity and structure of hydrophobes on the properties of hydrophobically modified alginates in aqueous solutions. Polym Bull 57(4):563–574CrossRefGoogle Scholar
  10. Carvalho AJF (2008) Starch: major sources, properties and applications as thermoplastic materials. In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources, 1st edn. Elsevier, Amsterdam, pp 321–342Google Scholar
  11. Carvalho AJF, Curvelo AAS, Gandini A (2005) Surface chemical modification of thermoplastic starch: reactions with isocyanates, epoxy functions and stearoyl chloride. Ind Crop Prod 21:331–336CrossRefGoogle Scholar
  12. Chaa L, Joly N, Lequart V, Faugeron C, Mollet J-C, Martin P, Morvan H (2008) Isolation, characterization and valorization of hemicelluloses from Aristida pungens leaves as biomaterial. Carbohydr Polym 74(3):597–602CrossRefGoogle Scholar
  13. Chi H, Xu K, Xue D, Song C, Zhang W, Wang P (2007) Synthesis of dodecenyl succinic anhydride (DDSA) corn starch. Food Res Int 40:232–238CrossRefGoogle Scholar
  14. Cunha AG, Gandini A (2010) Turning polysaccharides into hydrophobic materials: a critical review. Part 1. Cellulose (in press)Google Scholar
  15. Cunha AG, Freire CSR, Silvestre AJD, Neto CP, Gandini A, Orblin E, Fardim P (2007) Characterization and evaluation of the hydrolytic stability of trifluoroacetylated cellulose fibers. J Colloid Interf Sci 316(2):360–366CrossRefGoogle Scholar
  16. Cunha AG, Fernandes SCM, Freire CSR, Silvestre AJD, Neto CP, Gandini A (2008) What is the real value of chitosan’s surface energy? Biomacromolecules 9(2):610–614CrossRefGoogle Scholar
  17. Deng H-T, Wang J-J, Liu Z-Y, Ma M (2010) Influence of varying surface hydrophobicity of chitosan membranes on the adsorption and activity of lipase. J Appl Polym Sci 115(2):1168–1175CrossRefGoogle Scholar
  18. Desbrières J, Martinez C, Rinaudo M (1996) Hydrophobic derivatives of chitosan: characterization and rheological behaviour. Int J Biol Macromol 19(1):21–28CrossRefGoogle Scholar
  19. Ebringerová A, Hromádková Z, Heinze T (2005) Hemicellulose. Adv Polym Sci 186:1–67CrossRefGoogle Scholar
  20. Einbu A, Vårum KM (2008) Characterization of chitin and its hydrolysis to GlcNAc and GlcN. Biomacromolecules 9(7):1870–1875CrossRefGoogle Scholar
  21. Enescu D (2009) Polydimethylsiloxane modified chitosan IV. Preparation and characterization of porous hybrid membranes. J Macromol Sci A 46(4):438–446CrossRefGoogle Scholar
  22. Enescu D, Hamciuc V, Ardeleanu R, Cristea M, Ioanid A, Harabagiu V, Simionescu BC (2009) Polydimethylsiloxane modified chitosan. Part III: preparation and characterization of hybrid membranes. Carbohydr Polym 76(2):268–278CrossRefGoogle Scholar
  23. Fang JM, Sun RC, Fowler P, Tomkinson J, Hill CAS (1999) Esterification of wheat straw hemicelluloses in the N, N-dimethylformamide/lithium chloride homogeneous system. J Appl Polym Sci 74(9):2301–2311CrossRefGoogle Scholar
  24. Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D (2002) Super-hydrophobic surfaces: from natural to artificial. Adv Mater 14(24):1857–1860CrossRefGoogle Scholar
  25. Feng L, Zhou Z, Dufresne A, Huang J, Wei M, An L (2009) Structure and properties of new thermoforming bionanocomposites based on chitin whisker-graft-polycaprolactone. J Appl Polym Sci 112(5):2830–2837CrossRefGoogle Scholar
  26. Fink K, Höhne S, Spange S, Simon F (2009) Hydrophobically functionalized chitosan particles. J Adhes Sci Technol 23(2):297–315CrossRefGoogle Scholar
  27. Fogg G (1944) Diurnal fluctuation in a physical property of leaf cuticle. Nature 154:515CrossRefGoogle Scholar
  28. Fredon E, Granet R, Zerrouki R, Krausz P, Saulnier L, Thibault JF, Rosier J, Petit C (2002) Hydrophobic films from maize bran hemicelluloses. Carbohydr Polym 49(1):1–12CrossRefGoogle Scholar
  29. Gandini A, Belgacem MN (2008) The state of the art. In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources, 1st edn. Elsevier, Amsterdam, pp 1–16Google Scholar
  30. Gao L, McCarthy TJ (2009) Wetting 101°. Langmuir 25(24):14105–14115CrossRefGoogle Scholar
  31. Gao L, McCarthy TJ, Zhang X (2009) Wetting and superhydrophobicity. Langmuir 25(24):14100–14104CrossRefGoogle Scholar
  32. Geng F, Chang PR, Yu J, Ma X (2010) The fabrication and the properties of pretreated corn starch laurate. Carbohydr Polym 80(2):361–366CrossRefGoogle Scholar
  33. Grondahl M, Gustafsson A, Gatenholm P (2006) Gas-phase surface fluorination of arabinoxylan films. Macromolecules 39(7):2718–2721CrossRefGoogle Scholar
  34. Hansen NML, Plackett D (2008) Sustainable films and coatings from hemicelluloses: a review. Biomacromolecules 9(6):1493–1505CrossRefGoogle Scholar
  35. Hyde JF (1948) Method of rendering glass water repellent. US Patent 2439689:3Google Scholar
  36. Jayakumar R, Nwe N, Tokura S, Tamura H (2007) Sulfated chitin and chitosan as novel biomaterials. Int J Biol Macromol 40(3):175–181CrossRefGoogle Scholar
  37. Kurita K (2006) Chitin and chitosan: functional biopolymers from marine crustaceans. Mar Biotechnol 8(3):203–226CrossRefGoogle Scholar
  38. Lee KY, Jeong L, Kang YO, Lee SJ, Park WH (2009) Electrospinning of polysaccharides for regenerative medicine. Adv Drug Deliv Rev 61(12):1020–1032CrossRefGoogle Scholar
  39. Li F, Liu WG, Yao KD (2002) Preparation of oxidized glucose-crosslinked N-alkylated chitosan membrane and in vitro studies of pH-sensitive drug delivery behaviour. Biomaterials 23(2):343–347CrossRefGoogle Scholar
  40. Li J, Gong Y, Zhao N, Zhang X (2005) Preparation of N-butyl chitosan and study of its physical and biological properties. J Appl Polym Sci 98(3):1016–1024CrossRefGoogle Scholar
  41. Li S, Xie H, Zhang S, Wang X (2007) Facile transformation of hydrophilic cellulose into superhydrophobic cellulose. Chem Commun 46:4857–4859CrossRefGoogle Scholar
  42. Liu WG, Li F, Zhao XD, Yao KD, Liu QG (2002) Atom force microscopic characterisation of the interaction forces between bovine serum albumin and cross-linked alkylated chitosan membranes in media of different pH. Polym Int 51(12):1459–1463CrossRefGoogle Scholar
  43. Liu LS, Fishman ML, Hicks KB (2007) Pectin in controlled drug delivery—a review. Cellulose 14(1):15–24CrossRefGoogle Scholar
  44. Ma Y, Jia Y-L, Shang Y-L, Liao F-H, Li J-R, Zhang S-H, Zhang O (2007) Crosslinked chitosan doped with Y2(CO3)3 and surface energy and electrorheological properties. J Appl Polym Sci 105(4):2427–2432CrossRefGoogle Scholar
  45. Moine C, Gloaguen V, Gloaguen J-M, Granet R, Krausz P (2004) Chemical valorization of forest and agricultural by-products. Obtention, chemical characteristics, and mechanical behavior of a novel family of hydrophobic films. J Environ Sci Health B 39(4):627–640CrossRefGoogle Scholar
  46. Nair KG, Dufresne A, Belgacem MN, Gandini A (2003) Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers. Biomacromolecules 4(6):1835–1842CrossRefGoogle Scholar
  47. Namazi H, Dadkhah A (2010) Convenient method for preparation of hydrophobically modified starch nanocrystals with using fatty acids. Carbohydr Polym 79(3):731–737CrossRefGoogle Scholar
  48. Peng F, Ren J-L, Peng B, Xu F, Sun R-C, Sun J-X (2008) Rapid homogeneous lauroylation of wheat straw hemicelluloses under mild conditions. Carbohydr Res 343(17):2956–2962CrossRefGoogle Scholar
  49. Peniche C, Monal WA, Goycoolea FM (2008) Chitin and chitosan: major sources, properties and applications. In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources, 1st edn. Elsevier, Amsterdam, pp 517–542Google Scholar
  50. Péroval C, Debeaufort F, Despré D, Voilley A (2002) Edible arabinoxylan-based films. 1. Effects of lipid type on water vapor permeability, film structure, and other physical characteristics. J Agric Food Chem 50(14):3977–3983CrossRefGoogle Scholar
  51. Péroval C, Debeaufort F, Seuvre A-M, Chevet B, Despré D, Voilley A (2003) Modified arabinoxylan-based films. Part B. Grafting of omega-3 fatty acids by oxygen plasma and electron beam irradiation. J Agric Food Chem 51(10):3120–3126CrossRefGoogle Scholar
  52. Péroval C, Debeaufort F, Seuvre A-M, Cayot P, Chevet B, Despré D, Voilley A (2004) Modified arabinoxylan-based films grafting of functional acrylates by oxygen plasma and electron beam irradiation. J Membr Sci 233(1–2):129–139CrossRefGoogle Scholar
  53. Pillai C, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Progr Polym Sci 34:641–678CrossRefGoogle Scholar
  54. Ralet M-C, Lerouge P, Quéméner B (2009) Mass spectrometry for pectin structure analysis. Carbohydr Res 344(14):1798–1807CrossRefGoogle Scholar
  55. Ramesh HP, Tharanathan RN (2003) Carbohydrates—the renewable raw materials of high biotechnological value. Crit Rev Biotechnol 23(2):149–173CrossRefGoogle Scholar
  56. Remminghorst U, Rehm BHA (2006) Bacterial alginates: from biosynthesis to applications. Biotechnol Lett 28(21):1701–1712CrossRefGoogle Scholar
  57. Ridley BL, O’Neill MA, Mohnen D (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57(6):929–967CrossRefGoogle Scholar
  58. Rillosi M, Buckton G (1995) Modelling mucoadhesion by use of surface energy terms obtained from the Lewis acid-Lewis base approach. II. Studies on anionic, cationic, and unionisable polymers. Pharm Res 12(5):669–675CrossRefGoogle Scholar
  59. Rinaudo M (2008) Main properties and current applications of some polysaccharides as biomaterials. Polym Int 57(3):397–430CrossRefGoogle Scholar
  60. Round AN, Rigby NM, MacDougall AJ, Morris VJ (2010) A new view of pectin structure revealed by acid hydrolysis and atomic force microscopy. Carbohydr Res 345(4):487–497CrossRefGoogle Scholar
  61. Rutnakornpituk M, Ngamdee P, Phinyocheep P (2006) Preparation and properties of polydimethylsiloxane-modified chitosan. Carbohydr Polym 63(2):229–237CrossRefGoogle Scholar
  62. Sionkowska A, Kaczmarek H, Wisniewski M, Skopinska J, Lazare S, Tokarev V (2006) The influence of UV irradiation on the surface of chitosan films. Surf Sci 600(18):3775–3779CrossRefGoogle Scholar
  63. Smelcerovic A, Jugovic ZK, Petronijevic Z (2008) Microbial polysaccharides and their derivatives as current and prospective pharmaceuticals. Curr Pharm Design 14(29):3168–3195CrossRefGoogle Scholar
  64. Song W, Gaware VS, Rúnarsson ÖV, Másson M, Mano JF (2010) Functionalized superhydrophobic biomimetic chitosan-based films. Carbohydr Polym 81(1):140–144CrossRefGoogle Scholar
  65. Spiridon I, Popa VI (2008) Hemicelluloses: major sources, properties and applications. In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources, 1st edn. Elsevier, Amsterdam, pp 289–304Google Scholar
  66. Sriamornsak P (2003) Chemistry of pectin and its pharmaceutical uses: a review. Silpakorn Univ Int J 3(1–2):206–228Google Scholar
  67. Sun RC, Fang JM, Tomkinson J, Hill CAS (1999) Esterification of hemicelluloses from poplar chips in homogenous solution of N, N-dimethylformamide/lithium chloride. J Wood Chem Technol 19(4):287–306CrossRefGoogle Scholar
  68. Sun RC, Fang JM, Tomkinson J (2000) Stearoylation of hemicelluloses from wheat straw. Polym Degrad Stab 67(2):345–353CrossRefGoogle Scholar
  69. Sun RC, Fang JM, Tomkinson J, Geng ZC, Liu JC (2001) Fractional isolation, physico-chemical characterization and homogeneous esterification of hemicelluloses from fast-growing poplar wood. Carbohydr Polym 44(1):29–39CrossRefGoogle Scholar
  70. Sun RC, Sun XF, Tomkinson J (2004) Hemicelluloses and their derivatives. In: Gatenholm P, Tenkanen M (eds) Hemicelluloses: science and technology. American Chemical Society, Washington, pp 2–22Google Scholar
  71. Sun T, Feng L, Gao X, Jiang L (2005) Bioinspired surfaces with special wettability. Acc Chem Res 38(8):644–652CrossRefGoogle Scholar
  72. Tahlawy KE, Venditti R, Pawlak J (2008) Effect of alkyl ketene dimer reacted starch on the properties of starch microcellular foam using a solvent exchange technique. Carbohydr Polym 73(1):133–142CrossRefGoogle Scholar
  73. Tangpasuthadol V, Pongchaisirikul N, Hoven VP (2003) Surface modification of chitosan films. Effects of hydrophobicity on protein adsorption. Carbohydr Res 338(9):937–942CrossRefGoogle Scholar
  74. The DP, Péroval C, Debeaufort F, Despré D, Courthaudon JL, Voilley A (2002a) Arabinoxylan-lipids-based edible films and coatings. 2. Influence of sucroester nature on the emulsion structure and film properties. J Agric Food Chem 50(2):266–272CrossRefGoogle Scholar
  75. The DP, Debeaufort F, Péroval C, Despré D, Courthaudon JL, Voilley A (2002b) Arabinoxylan-lipid-based edible films and coatings. 3. Influence of drying temperature on film structure and functional properties. J Agric Food Chem 50(8):2423–2428CrossRefGoogle Scholar
  76. Thiebaud S, Aburto J, Alric I, Borredon E, Bikiaris D, Prinos J, Panayiotou C (1997) Properties of fatty-acid esters of starch and their blends with LDPE. J Appl Polym Sci 65(4):705–721CrossRefGoogle Scholar
  77. Thielemans W, Belgacem MN, Dufresne A (2006) Starch nanocrystals with large chain surface modifications. Langmuir 22(10):4804–4810CrossRefGoogle Scholar
  78. Wong DWS, Gastineau FA, Gregorski KS, Tillin SJ, Pavlath AE (1992) Chitosan-lipid films: microstructure and surface energy. J Agric Food Chem 40(4):540–544CrossRefGoogle Scholar
  79. Xu QF, Wang JN, Smith IH, Sanderson KD (2009) Superhydrophobic and transparent coatings based on removable polymeric spheres. J Mater Chem 19(5):655–660CrossRefGoogle Scholar
  80. Yalpani M, Hall LD (1984) Some chemical and analytical aspects of polysaccharide modifications. 3. Formation of branched-chain, soluble chitosan derivatives. Macromolecules 17(3):272–281CrossRefGoogle Scholar
  81. Yamamoto H, Nishida A, Ohkawa K (1999) Wettability and adhesion of marine and related adhesive proteins. Colloid Surf A 149(1–3):553–559CrossRefGoogle Scholar
  82. Zhou J, Ren L, Tong J, Xie L, Liu Z (2009a) Surface esterification of corn starch films: reaction with dodecenyl succinic anhydride. Carbohydr Polym 78(4):888–893CrossRefGoogle Scholar
  83. Zhou J, Ren L, Tong J, Ma Y (2009b) Effect of surface esterification with octenyl succinic anhydride on hydrophilicity of corn starch films. J Appl Polym Sci 114(2):940–947CrossRefGoogle Scholar
  84. Zia KM, Barikani M, Zuber M, Bhatti IA, Barmar M (2009a) Surface characteristics of polyurethane elastomers based on chitin/1, 4-butane diol blends. Int J Biol Macromol 44(2):182–185CrossRefGoogle Scholar
  85. Zia KM, Zuber M, Barikani M, Bhatti IA, Khan MB (2009b) Surface characteristics of chitin-based shape memory polyurethane elastomers. Colloid Surf B 72(2):248–252CrossRefGoogle Scholar
  86. Zouambia Y, Mostefa NM, Krea M (2009) Structural characterization and surface activity of hydrophobically functionalized extracted pectins. Carbohydr Polym 78(4):841–846CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.CICECO and Department of ChemistryUniversity of AveiroAveiroPortugal

Personalised recommendations