Cellulose

, Volume 17, Issue 5, pp 875–889 | Cite as

Turning polysaccharides into hydrophobic materials: a critical review. Part 1. Cellulose

Article

Abstract

This survey constitutes the first part of a comprehensive review, whose purpose is to provide a reasoned perspective in the field related to the preparation of new polysaccharide-based hydrophobic materials by scrutinizing the actual state of its art. This part of the review is entirely dedicated to cellulose, by far the most probed natural substrate, where publications dealing with both chemical and physical treatments aimed at inducing a substantial increase in the hydrophobic character of the surface are critically examined. Furthermore, this initiative constitutes an attempt to emphasize the relevance of this topic within the broader context of the elaboration of novel materials based on renewable resources as a viable alternative to their fossil-based counterparts.

Keywords

Polysaccharides Cellulose Hydrophobicity Chemical modifications Physical treatments 

References

  1. Abdelmouleh M, Boufi S, Ab Salah, Belgacem MN, Gandini A (2002) Interaction of silane coupling agents with cellulose. Langmuir 18(8):3203–3208CrossRefGoogle Scholar
  2. Abdelmouleh M, Boufi S, Belgacem MN, Duarte AP, Salah AB, Gandini A (2004) Modification of cellulosic fibres with functionalised silanes: development of surface properties. Int J Adhes Adhes 24(1):43–54CrossRefGoogle Scholar
  3. Balu B, Breedveld V, Hess DW (2008) Fabrication of “roll-off” and “sticky” superhydrophobic cellulose surfaces via plasma processing. Langmuir 24(9):4785–4790CrossRefGoogle Scholar
  4. Barni R, Zanini S, Beretta D, Riccardi C (2007) Experimental study of hydrophobic/hydrophilic transition in SF6 plasma interaction with polymer surfaces. Eur Phys J Appl Phys 38(3):263–268CrossRefGoogle Scholar
  5. Bayer IS, Steele A, Martorana PJ, Loth E, Miller L (2009) Superhydrophobic cellulose-based bionanocomposite films from Pickering emulsions. Appl Phys Lett 94(16):163902CrossRefGoogle Scholar
  6. Belgacem MN, Gandini A (2005) The surface modification of cellulose fibres for use as reinforcing elements in composite materials. Compos Interface 12(1–2):41–75CrossRefGoogle Scholar
  7. Belgacem MN, Gandini A (2008) Surface modification of cellulose fibres. In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources, 1st edn. Elsevier, Amsterdam, pp 385–400Google Scholar
  8. Belgacem MN, Gandini A (2009) Natural fibre-surface modification and characterisation. In: Sabu T, Pothan L (eds) Natural fibre reinforced polymer composites: from macro to nanoscale. Old City Publishing, Philadelphia, pp 14–46Google Scholar
  9. Berlioz S, SM- Boisseau, Nishiyama Y, Heux L (2009) Gas-phase surface esterification of cellulose microfibrils and whiskers. Biomacromolecules 10:2144–2151CrossRefGoogle Scholar
  10. Boufi S, Belgacem MN (2006) Modified cellulose fibres for adsorption of dissolved organic solutes. Cellulose 13(1):81–94CrossRefGoogle Scholar
  11. Boufi S, Gandini A (2001) Formation of polymeric films on cellulosic surfaces by admicellar polymerization. Cellulose 8(4):303–312CrossRefGoogle Scholar
  12. Bourbonnais R, Marchessault RH (2010) Application of polyhydroxyalkanoate granules for sizing of paper. Biomacromolecules 11(4):989–993CrossRefGoogle Scholar
  13. Bras J, Vaca-Garcia C, Borredon ME, Glasser W (2007) Oxygen and water vapor permeability of fully substituted long chain cellulose esters (LCCE). Cellulose 14(4):367–374CrossRefGoogle Scholar
  14. Butler LG (1975) Enzyme immobilization by adsorption on hydrophobic derivatives of cellulose and other hydrophilic materials. Arch Biochem Biophys 171(2):645–650CrossRefGoogle Scholar
  15. Castellano M, Gandini A, Fabbri P, Belgacem MN (2004) Modification of cellulose fibres with organosilanes: under what conditions does coupling occur? J Colloid Interface Sci 273(2):505–511CrossRefGoogle Scholar
  16. Crepy L, Chaveriat L, Banoub J, Martin P, Joly N (2009) Synthesis of cellulose fatty esters as plastics-influence of the degree of substitution and the fatty chain length on mechanical properties. ChemSusChem 2(2):165–170CrossRefGoogle Scholar
  17. Cunha AG, Freire CSR, Silvestre AJD, Neto CP, Gandini A (2006) Reversible hydrophobization and lipophobization of cellulose fibers via trifluoroacetylation. J Colloid Interface Sci 301(1):333–336CrossRefGoogle Scholar
  18. Cunha AG, Freire CSR, Silvestre AJD, Neto CP, Gandini A, Orblin E, Fardim P (2007a) Characterization and evaluation of the hydrolytic stability of trifluoroacetylated cellulose fibers. J Colloid Interface Sci 316(2):360–366CrossRefGoogle Scholar
  19. Cunha AG, Freire CSR, Silvestre AJD, Neto CP, Gandini A, Orblin E, Fardim P (2007b) Highly hydrophobic biopolymers prepared by the surface pentafluorobenzoylation of cellulose substrates. Biomacromolecules 8(4):1347–1352CrossRefGoogle Scholar
  20. Cunha AG, Freire CSR, Silvestre AJD, Neto CP, Gandini A, Orblin E, Fardim P (2007c) Bi-phobic cellulose fibers derivatives via surface trifluoropropanoylation. Langmuir 23(21):10801–10806CrossRefGoogle Scholar
  21. Cunha AG, Freire CSR, Silvestre AJD, Neto CP, Gandini A (2010a) Preparation and characterization of novel highly omniphobic cellulose fibers organic–inorganic hybrid materials. Carbohydr Polym 80(4):1048–1056CrossRefGoogle Scholar
  22. Cunha AG, Freire C, Silvestre A, Neto CP, Gandini A, Belgacem MN, Chaussy D, Beneventi D (2010b) Preparation of highly hydrophobic and lipophobic cellulose fibers by a straightforward gas–solid reaction. J Colloid Interface Sci 344(2):588–595CrossRefGoogle Scholar
  23. Cunha AG, Freire C, Silvestre A, Neto CP, Gandini A (2010c) unpublished resultsGoogle Scholar
  24. Dankovich TA, Hsieh Y-L (2007) Surface modification of cellulose with plant triglycerides for hydrophobicity. Cellulose 14(5):469–480CrossRefGoogle Scholar
  25. Daoud WA, Xin JH, Tao X (2004) Superhydrophobic silica nanocomposite coating by a low-temperature process. J Am Ceram Soc 87(9):1782–1784CrossRefGoogle Scholar
  26. Daoud WA, Xin JH, Zhang YH, Mak CL (2006) Pulsed laser deposition of superhydrophobic thin teflon films on cellulosic fibers. Thin Solid Films 515:835–837CrossRefGoogle Scholar
  27. Dixon J, Butler LG (1977) Utilization of hydrophobic esters of cellulose for enzyme immobilization. Fed Proc 36(3):864Google Scholar
  28. Dixon J, Andrews P, Butler LG (1979) Hydrophobic esters of cellulose-properties and applications in biochemical technology. Biotechnol Bioeng 21(11):2113–2123CrossRefGoogle Scholar
  29. Erasmus E, Barkhuysen FA (2009) Superhydrophobic cotton by fluorosilane modification. Indian J Fibre Text Res 34:377–379Google Scholar
  30. Fadeev AY, McCarthy TJ (2000) Self-assembly is not the only reaction possible between alkyltrichlorosilanes and surfaces: monomolecular and oligomeric covalently attached layers of dichloro-and trichloroalkylsilanes on silicon. Langmuir 16(18):7268–7274CrossRefGoogle Scholar
  31. Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D (2002) Super-hydrophobic surfaces: from natural to artificial. Adv Mater 14(24):1857–1860CrossRefGoogle Scholar
  32. Fogg G (1944) Diurnal fluctuation in a physical property of leaf cuticle. Nature 154:515CrossRefGoogle Scholar
  33. Freire CSR, Silvestre AJD, Neto CP, Belgacem MN, Gandini A (2006) Controlled heterogeneous modification of cellulose fibers with fatty acids: effect of reaction conditions on the extent of esterification and fiber properties. J Appl Polym Sci 100(2):1093–1102CrossRefGoogle Scholar
  34. Gaiolas C, Costa AP, Nunes M, Silva MJS, Belgacem MN (2008) Grafting of paper by silane coupling agents using cold-plasma discharge. Plasma Process Polym 5:444–452CrossRefGoogle Scholar
  35. Gaiolas C, Belgacem MN, Silva L, Thielemans W, Costa AP, Nunes M, Silva MJS (2009) Green chemicals and process to graft cellulose fibers. J Colloid Interface Sci 330(2):298–302CrossRefGoogle Scholar
  36. Gandini A, Belgacem MN (2008) The state of the art. In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources, 1st edn. Elsevier, Amsterdam, pp 1–16Google Scholar
  37. Gao L, McCarthy TJ (2009) Wetting 101°. Langmuir 25(24):14105–14115CrossRefGoogle Scholar
  38. Gao L, McCarthy TJ, Zhang X (2009) Wetting and superhydrophobicity. Langmuir 25(24):14100–14104CrossRefGoogle Scholar
  39. Gess JM, Rende DS (2005) Alkenyl succinic anhydride (ASA). Tappi J 4(9):25–30Google Scholar
  40. Gonçalves G, Marques PAAP, Pinto RJB, Trindade T, Neto CP (2009) Surface modification of cellulosic fibres for multi-purpose TiO2 based nanocomposites. Compos Sci Technol 69(7–8):1051–1056CrossRefGoogle Scholar
  41. Gonçalves G, Marques PAAP, Trindade T, Neto CP, Gandini A (2008) Superhydrophobic cellulose nanocomposites. J Colloid Interface Sci 324(1–2):42–46CrossRefGoogle Scholar
  42. Gonzalez AV, Uc JMC, Olayo R, Franco PJH (1999a) Effect of fiber surface treatment on the fiber-matrix bond strength of natural fiber reinforced composites. Compos B 30:309–320CrossRefGoogle Scholar
  43. Gonzalez AV, Uc JMC, Olayo R, Franco PJH (1999b) Chemical modification of henequén fibers with an organosilane coupling agent. Compos B 30:321–331CrossRefGoogle Scholar
  44. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev. doi:  10.1021/cr900339w
  45. Heinze T, Petzold K (2008) Cellulose chemistry: novel products and synthesis paths. In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources, 1st edn. Elsevier, Amsterdam, pp 343–368Google Scholar
  46. Hyde JF (1948) Method of rendering glass water repellent. U.S. Patent 2439689:3Google Scholar
  47. Janoobi M, Harun J, Mathew AP, Hussein MZB, Oksman K (2010) Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose 17(2):299–307CrossRefGoogle Scholar
  48. Jantas R, Górna K (2003) Antibacterial finishing of cotton fabrics. Fibres Text East Eur 14(1):88–91Google Scholar
  49. Kong Y, Lin X, Wu YL, Chen J, Xu JP (1992) Plasma polymerization of octafluorocyclobutane and hydrophobic microporous composite membranes for membrane distillation. J Appl Polym Sci 46(2):191–199CrossRefGoogle Scholar
  50. Krässig HA (1993) Cellulose: structure, accessibility and reactivity, 1st edn. Gordon and Breach Science Publishers, AmsterdamGoogle Scholar
  51. Li S, Xie H, Zhang S, Wang X (2007) Facile transformation of hydrophilic cellulose into superhydrophobic cellulose. Chem Commun 4857–4859Google Scholar
  52. Li S, Zhang S, Wang X (2008) Fabrication of superhydrophobic cellulose-based materials through a solution-immersion process. Langmuir 24:5585–5590CrossRefGoogle Scholar
  53. Li S, Wei Y, Huang J (2010a) Facile fabrication of superhydrophobic cellulose materials by a nanocoating approach. Chem Lett 39(1):20–21CrossRefGoogle Scholar
  54. Li G, Wang H, Zheng H, Bai R (2010b) A facile approach for the fabrication of highly stable superhydrophobic cotton fabric with multi-walled carbon nanotubes–azide polymer composites. Langmuir. doi: 10.1021/la904337z
  55. Lindstrom T, Larsson PT (2008) Alkyl ketene dimer (AKD) sizing—a review. Nord Pulp Pap Res J 23(2):202–209CrossRefGoogle Scholar
  56. Ly B, Belgacem MN, Bras J, Salon MCB (2009) Grafting of cellulose by fluorine-bearing silane coupling agents. Mater Sci Eng C 30(3):343–347CrossRefGoogle Scholar
  57. Ly EhB, Bras J, Sadocco P, Belgacem MN, Dufresne A, Thielemans W (2010) Surface functionalization of cellulose by grafting oligoether chains. Mater Chem Phys 120(2–3):438–445CrossRefGoogle Scholar
  58. Marsh JT (1942) An introduction to the chemistry of cellulose, 2nd edn. Chapman & Hall, LondonGoogle Scholar
  59. Matuana LM, Balatinecz JJ, Park CB, Sodhi RNS (1999) X-ray photoelectron spectroscopy study of silane-treated newsprint-fibers. Wood Sci Technol 33(4):259–270CrossRefGoogle Scholar
  60. Mukhopadhyay SM, Joshi P, Datta S, Zhao JG, France P (2002) Plasma assisted hydrophobic coatings on porous materials: influence of plasma parameters. J Phys D Appl Phys 35:1927–1933CrossRefGoogle Scholar
  61. Navarro F, Dávalos F, Denes F, Cruz LE, Young RA, Ramos J (2003) Highly hydrophobic sisal chemithermomechanical pulp (CTMP) paper by fluorotrimethylsilane plasma treatment. Cellulose 10(4):411–424CrossRefGoogle Scholar
  62. Nyström D, Lindqvist J, Östmark E, Hult A, Malmström E (2006) Superhydrophobic bio-fibre surfaces via tailored grafting architecture. Chem Commun 34:3594–3596CrossRefGoogle Scholar
  63. Nyström D, Lindqvist J, Östmark E, Antoni P, Carlmark A, Hult A, Malmström E (2009) Superhydrophobic and self-cleaning bio-fiber surfaces via ATRP and subsequent postfunctionalization. ACS Appl Mater Inter 1(4):816–823CrossRefGoogle Scholar
  64. Ogawa T, Ding B, Sone Y, Shiratori S (2007) Super-hydrophobic surfaces of layer-by-layer structured film-coated electrospun nanofibrous membranes. Nanotechnology 18(16):165607CrossRefGoogle Scholar
  65. Ostenson M, Järund H, Toriz G, Gatenholm P (2006) Determination of surface functional groups in lignocellulosic materials by chemical derivatization and ESCA analysis. Cellulose 13(2):157–170CrossRefGoogle Scholar
  66. Pagliaro M, Ciriminna R (2005) New fluorinated functional materials. J Mater Chem 15(47):4981–4991CrossRefGoogle Scholar
  67. Paquet O, Krouit M, Bras J, Thielemans W, Belgacem MN (2010) Surface modification of cellulose by PCL grafts. Acta Mater 58(3):792–801CrossRefGoogle Scholar
  68. Park B-D, Wi SG, Lee KH, Singh AP, Yoon T-H, Kim YS (2004) X-ray photoelectron spectroscopy of rice husk surface modified with maleated polypropylene and silane. Biomass Bioenerg 27(4):353–363CrossRefGoogle Scholar
  69. Pasquini D, Teixeira EM, Curvelo AAS, Belgacem MN, Dufresne A (2008) Surface esterification of cellulose fibres: processing and characterisation of low-density polyethylene/cellulose fibres composites. Compos Sci Technol 68(1):193–201CrossRefGoogle Scholar
  70. Peydecastaing J, Girardeau S, Vaca-Garcia C, Borredon ME (2006) Long chain cellulose esters with very low DS obtained with non-acidic catalysts. Cellulose 13(1):95–103CrossRefGoogle Scholar
  71. Pickering K, Abdalla A, Ji C, McDonald AG, Franich RA (2003) The effect of silane coupling agents on radiata pine fibre for use in thermoplastic matrix composites. Compos A 34(10):915–926CrossRefGoogle Scholar
  72. Pothan L, Bellman C, Kailas L, Thomas S (2002) Influence of chemical treatments on the electrokinetic properties of cellulose fibres. J Adhes Sci Technol 16(2):157–178CrossRefGoogle Scholar
  73. Ramesh HP, Tharanathan RN (2003) Carbohydrates—the renewable raw materials of high biotechnological value. Crit Rev Biotechnol 23(2):149–173CrossRefGoogle Scholar
  74. Redondo SUA, Radovanovic E, Gonçalves MC, Yoshida IVP (2002) Eucalyptus kraft pulp fibers as an alternative reinforcement of silicone composites. I. Characterization and chemical modification of Eucalyptus fibers with organosilane coupling agent. J Appl Polym Sci 85(12):2573–2579CrossRefGoogle Scholar
  75. Roberts JC (1996) Paper chemistry, 2nd edn. Chapman & Hall, LondonGoogle Scholar
  76. Sahin HT (2007) RF-CF4 plasma surface modification of paper: chemical evaluation of two sidedness with XPS/ATR-FTIR. Appl Surf Sci 253(9):4367–4373CrossRefGoogle Scholar
  77. Sahin HT, Manolache S, Young RA, Denes F (2002) Surface fluorination of paper in CF4-RF plasma environments. Cellulose 9(2):171–181CrossRefGoogle Scholar
  78. Sarkar MK, He F, Fan J (2010) Differential superhydrophobicity and hydrophilicity on a thin cellulose layer. Thin Solid Films 518:5033–5039CrossRefGoogle Scholar
  79. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose. doi:  10.1007/s10570-010-9405-y
  80. Sreekala M, Thomas S (2003) Effect of fibre surface modification on water-sorption characteristics of oil palm fibres. Compos Sci Technol 63(6):861–869CrossRefGoogle Scholar
  81. Sun T, Feng L, Gao X, Jiang L (2005) Bioinspired surfaces with special wettability. Acc Chem Res 38(8):644–652CrossRefGoogle Scholar
  82. Tang W, Huang Y, Meng W, Qing F-L (2010) Synthesis of fluorinated hyperbranched polymers capable as highly hydrophobic and oleophobic coating materials. Eur Polym J 46(3):506–518CrossRefGoogle Scholar
  83. Tomšič B, Simončič B, Orel B, Černe L, Tavčer PF, Zorko M, Jerman I, Vilčnik A, Kovač J (2008) Sol-gel coating of cellulose fibres with antimicrobial and repellent properties. J Sol Gel Sci Technol 47(1):44–57CrossRefGoogle Scholar
  84. Vilčnik A, Jerman I, Vuk AŠ, Koželj M, Orel B, Tomšič B, Simončič B, Kovač J (2009) Structural properties and antibacterial effects of hydrophobic and oleophobic sol-gel coatings for cotton fabrics. Langmuir 25(10):5869–5880CrossRefGoogle Scholar
  85. Vince J, Orel B, Vilčnik A, Fir M, Vuk AŠ, Jovanovski V, Simončič B (2006) Structural and water-repellent properties of a urea/poly(dimethylsiloxane) sol-gel hybrid and its bonding to cotton fabric. Langmuir 22(15):6489–6497CrossRefGoogle Scholar
  86. Werner O, Quan C, Turner C, Petterson B, Wågberg L (2010) Properties of superhydrophobic paper treated with rapid expansion of supercritical CO2 containing a crystallizing wax. Cellulose 17(1):187–198CrossRefGoogle Scholar
  87. Xu QF, Wang JN, Smith IH, Sanderson KD (2009) Superhydrophobic and transparent coatings based on removable polymeric spheres. J Mater Chem 19(5):655–660CrossRefGoogle Scholar
  88. Xu B, Cai Z, Wang W, Ge F (2010) Preparation of superhydrophobic cotton fabrics based on SiO2 nanoparticles and ZnO nanorod arrays with subsequent hydrophobic modification. Surf Coat Tech 204(9–10):1556–1561CrossRefGoogle Scholar
  89. Xue C-H, Jia S-T, Zhang J, Tian L-Q, Chen H-Z, Wang M (2008) Preparation of superhydrophobic surfaces on cotton textiles. Sci Technol Adv Mater 9:035008(7)Google Scholar
  90. Yang H, Deng Y (2008) Preparation and physical properties of superhydrophobic papers. J Colloid Interf Sci 325(2):588–593CrossRefGoogle Scholar
  91. Yuan H, Nishiyama Y, Kuga S (2005) Surface esterification of cellulose by vapor-phase treatment with trifluoroacetic anhydride. Cellulose 12:543–549CrossRefGoogle Scholar
  92. Zhang J, France P, Radomyselskiy A, Datta S, Zhao J, Wv Ooij (2003) Hydrophobic cotton fabric coated by a thin nanoparticulate plasma film. J Appl Polym Sci 88:1473–1481CrossRefGoogle Scholar
  93. Zhang H, Kannangara D, Hilder M, Ettl R, Shen W (2007) The role of vapour deposition in the hydrophobization treatment of cellulose fibres using alkyl ketene dimers and alkenyl succinic acid anhydrides. Colloid Surf A 297(1–3):203–210CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.CICECO and Department of ChemistryUniversity of AveiroAveiroPortugal

Personalised recommendations