Advertisement

Cellulose

, Volume 17, Issue 4, pp 747–756 | Cite as

Characterisation of amino acid modified cellulose surfaces using ToF-SIMS and XPS

  • D. M. Kalaskar
  • R. V. Ulijn
  • J. E. Gough
  • M. R. Alexander
  • D. J. Scurr
  • W. W. Sampson
  • S. J. Eichhorn
Article

Abstract

Cellulosic fibrous networks are modified using 3 different amino acids; small (Glycine, Gly), aliphatic (Leucine, Leu) and aromatic (Phenylalanine, Phe). The effect of amino acid functionality on chemical coupling to cellulose fibres in terms of their coverage and packing density are investigated. Different amino acid modified cellulose networks are characterised by using Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and X-ray Photoelectron Spectroscopy (XPS). The presence of amino acids is confirmed using ToF-SIMS. The quantitative distribution of different amino acids across the cellulose surface is assessed by using XPS. It is shown that the packing density of amino acids depends on the size of the side chain; smaller amino acids (Gly, Leu) tend to couple to the surface at higher density compared to larger ones (Phe). This study has implications for the functionalisation of polysaccharide materials for a wide range of applications.

Keywords

Amino acid Surface XPS ToF-SIMS 

Notes

Acknowledgments

The authors wish to thank the EPSRC for funding (Grant nos. EP/C0049301, EP.C004507/1 and EP/C004558/1) and to the ORS (Overseas Research Scholarship) and the University of Manchester for funding a doctoral studentship. We gratefully acknowledge a contribution to ToF-SIMS equipment facilities by the East Midlands Development Agency.

Supplementary material

10570_2010_9413_MOESM1_ESM.doc (34 kb)
(DOC 33 kb)

References

  1. Bagheri M, Rodríguez H, Swatloski RP, Spear SK, Daly DT, Rodgers RD (2008) Ionic liquid-based preparation of cellulose—dendrimer films as solid supports for enzyme immobilization. Biomacromolecules 9:381–387CrossRefGoogle Scholar
  2. Brewer NJ, Foster TT, Leggett GJ, Alexander MR, McAlpine E (2004) Comparative investigations of the packing and ambient stability of self-assembled monolayers of alkanethiols on gold and silver by friction force microscopy. J Phys Chem B 108:4723–4728CrossRefGoogle Scholar
  3. Brüning C, Hellweg S, Dambach S, Lipinsky D, Arlinghaus HF (2006) Improving the interpretation of ToF-SIMS measurements on adsorbed proteins using PCA. Surf Interface Anal 38:191–193CrossRefGoogle Scholar
  4. Buchholz V, Adler P, Bäcker M, Hölle W, Simon A, Wegner G (1997) Regeneration and hydroxyl accessibility of cellulose in ultrathin films. Langmuir 13:3206–3209CrossRefGoogle Scholar
  5. Cunha AG, Freire CSR, Silvestre AJD, Neto CP, Gandini A, Orblin E, Fardim P (2007) Highly hydrophobic biopolymers prepared by the surface pentafluorobenzoylation of cellulose substrates. Biomacromolecules 8:1347–1352CrossRefGoogle Scholar
  6. Dambach S, Fartmann M, Kriegeskotte C, Bruning C, Hellweg S, Wiesmann HP, Lipinsky D, Arlinghaus HF (2004) ToF-SIMS and laser-SNMS analysis of apatite formation in extracellular protein matrix of osteoblasts in vitro. Surf Interface Anal 36:711–715CrossRefGoogle Scholar
  7. Derda R, Laromain A, Mammoto A, Tang SKY, Mammoto T, Ingber DE, Whitesides GM (2009) Paper-supported 3D cell culture for tissue-based bioarrays. PNAS 106:18457–18462CrossRefGoogle Scholar
  8. Dorris GM, Gray DG (1978a) The surface analysis of paper and wood fibres by ESCA (electron spectroscopy for chemical analysis). I. Application to cellulose and lignin. Cellul Chem Technol 12:9–23Google Scholar
  9. Dorris GM, Gray DG (1978b) The surface analysis of paper and wood fibres by ESCA. II. Surface composition of mechanical pulps. Cellul Chem Technol 12:721–734Google Scholar
  10. Edgar KJ, Buchanan CM, Debenem JS, Rundquist PA, Seiler BD, Shelton MC, Tindall D (2001) Advances in cellulose ester performance and application. Prog Polym Sci 26:1605–1688CrossRefGoogle Scholar
  11. Enjalbal C, Maux D, Subra G, Martinez J, Combarieu R, Aubagnac JL (1999) Monitoring and quantification on solid support of a by-product formation during peptide synthesis by Tof-SIMS. Tetrahedron Lett 40:6217–6220CrossRefGoogle Scholar
  12. Fardim P, Gustafsson J, von Schoultz S, Peltonen J, Holmborn B (2005) Extractives on fiber surfaces investigated by XPS, ToF-SIMS and AFM. Coll Surf A 255:91–103CrossRefGoogle Scholar
  13. Frank R (1992) Spot-synthesis—an easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron 48:9217–9232CrossRefGoogle Scholar
  14. Frank R (2002) The SPOT synthesis technique—synthetic peptide arrays on membrane supports—principles and applications. J Immunol Methods 267:13–26CrossRefGoogle Scholar
  15. Frank R, Doring R (1988) Simultaneous multiple peptide-synthesis under continuous-flow conditions on cellulose paper disks as segmental solid supports. Tetrahedron 44:6031–6040CrossRefGoogle Scholar
  16. Granitza D, Beyermann M, Wenschuh H, Haber H, Carpino L, Truran G, Bienert M (1995) Efficient acylation of hydroxy functions by means of fmoc amino-acid fluorides. J Chem Soc Chem Comm 2223–2224Google Scholar
  17. Gustafsson J, Lehto JH, Tienvieri T, Ciovica L, Peltonen J (2003) Surface characteristics of thermomechanical pulps; the influence of defibration temperature and refining. Colloids Surf A Physicochem Eng Asp 225:95–104CrossRefGoogle Scholar
  18. Heinze T, Liebert T (2001) Unconventional methods in cellulose functionalization. Prog Polym Sci 26:1689–1762CrossRefGoogle Scholar
  19. Heinze T, Dorn S, Schöbitz M, Liebert T, Köhler S, Meister F (2008) Interactions of ionic liquids with polysaccharides 2: cellulose. Macromol Symp 262:8–22CrossRefGoogle Scholar
  20. Hua XJ, Kaliaguine S, Kokta BV (1993) Application of SIMS in polymers and lignocellulosic materials. J Appl Polym Sci 48:1–12CrossRefGoogle Scholar
  21. Istone WK (1995) X-ray photoelectron spectroscopy (XPS). In: Conners TE, Banerjee S (eds) Surface analysis of paper. CRC Press, New York, pp 235–268Google Scholar
  22. Johansson L-S, Campbell JM, Koljonen K, Stenius P (1999) Evaluation of surface lignin on cellulose fibres with XPS. Appl Surf Sci 144–145:92–95CrossRefGoogle Scholar
  23. Kalaskar DM, Gough JE, Ulijn RV, Sampson WW, Scurr DJ, Rutten FJ, Alexander MR, Merry CLR, Eichhorn SJ (2008) Controlling cell morphology on amino acid-modified cellulose. Soft Matter 4:1059–1065CrossRefGoogle Scholar
  24. Kato R, Kaga C, Kunimatsu M, Kobayashi T, Honda H (2006) Peptide array-based interaction assay of solid-bound peptides and anchorage-dependant cells and its effectiveness in cell-adhesive peptide design. J Biosci Bioeng 101:485–495CrossRefGoogle Scholar
  25. Kaya A, Du X, Liu Z, Lu JW, Morris JR, Glasser WG, Heinze T, Esker AR (2009) Surface Plasmon resonance studies of pullulan and pullulan cinnamate adsorption onto cellulose. Biomacromolecules 10:2451–2459CrossRefGoogle Scholar
  26. Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry: v. 2: functionalization of cellulose: functionalization of cellulose. Wiley-VCH, WeinheimGoogle Scholar
  27. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393CrossRefGoogle Scholar
  28. Koda S, Hori T, Nomura H, Kawaizumi F (1991) Hydration of methyl cellulose. Polymer 32:2806–2810CrossRefGoogle Scholar
  29. Koljonen K, Osterberg M, Johannson LS, Stenius P (2003) Surface chemistry and morphology of different mechanical pulps determined by ESCA and AFM. Colloids Surf A Physicochem Eng Asp 228:143–158CrossRefGoogle Scholar
  30. Kontturi E, Thune PC, Niemantsverdriet JW (2003) Novel method for preparing cellulose model surfaces by spin coating. Polymer 44:3621–3625CrossRefGoogle Scholar
  31. Kontturi E, Thüne PC, Niemantsverdriet JW (2005) Trimethylsilylcellulose/polystyrene blends as a means to construct cellulose domains on cellulose. Macromolecules 38:10712–10720CrossRefGoogle Scholar
  32. Kontturi E, Johansson L-S, Kontturi KS, Ahonen P, Thüne PC, Laine J (2007) Cellulose nanocrystal submonlayers by spin coating. Langmuir 23:9674–9680CrossRefGoogle Scholar
  33. Kontturi KS, Tammelin T, Johansson L-S, Stenius P (2008) Adsorption of cationic starch on cellulose studied by QCM-D. Langmuir 24:4743–4749CrossRefGoogle Scholar
  34. Kontturi E, Johansson L-S, Laine J (2009) Cellulose decorated cavities on ultrathin films of PMMA. Soft Matter 5:1786–1788CrossRefGoogle Scholar
  35. Malmsten M, Lindman B (1990) Ellipsometry studies of the adsorption of cellulose ethers. Langmuir 6:357–364CrossRefGoogle Scholar
  36. Malmsten M, Claesson PM, Pezron E, Pezron I (1990) Temperature-dependent forces between hydrophobic surfaces coated with ethyl (hydroxyethyl) cellulose. Langmuir 6:1572–1578CrossRefGoogle Scholar
  37. Maximova N, Osterberg M, Koljonen K, Stenius P (2001) Lignin adsorption on cellulose fibre surfaces: effect on surface chemistry, surface morphology and paper strength. Cellulose 8:113–125CrossRefGoogle Scholar
  38. Mitchell R, Carr CM, Parfitt M, Vickerman JC, Jones C (2005) Surface chemical analysis of raw cotton fibres and associated materials. Cellulose 12:629–639CrossRefGoogle Scholar
  39. Rawsterne RE, Todd SJ, Gough JE, Farrar D, Rutten FJM, Alexander M, Ulijn RV (2007) Cell spreading correlates with calculated logP of amino acid-modified surfaces. Acta Biomaterialia 3:715–721.CrossRefGoogle Scholar
  40. Rojas OJ, Ernstsson M, Neuman RD, Claesson PM (2000) X-ray photoelectron spectroscopy in the study of polyelectrolyte adsorption on mica and cellulose. J Phys Chem B 104:10032–10042CrossRefGoogle Scholar
  41. Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064CrossRefGoogle Scholar
  42. Tiller J, Berlin P, Klemm D (1999) Soluble and film-forming cellulose derivatives with redox-chromogenic and enzyme immobilizing 1,4-phenylenediamine groups. Macromol Chem Phys 200:1–9CrossRefGoogle Scholar
  43. Verlhac C, Dedier J, Chanzy H (1990) Availability of surface hydroxyl-groups in valonia and bacterial cellulose. J Polym Sci A 28:1171–1177CrossRefGoogle Scholar
  44. Yuan H, Nishiyama Y, Wada M, Kuga S (2006) Surface acylation of cellulose whiskers by drying aqueous emulsion. Biomacromolecules 7:696–700CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • D. M. Kalaskar
    • 1
  • R. V. Ulijn
    • 2
  • J. E. Gough
    • 1
  • M. R. Alexander
    • 3
  • D. J. Scurr
    • 3
  • W. W. Sampson
    • 1
  • S. J. Eichhorn
    • 1
  1. 1.Materials Science Centre, School of MaterialsUniversity of ManchesterManchesterUK
  2. 2.Department of Pure and Applied Chemistry/WestCHEMThe University of StrathclydeGlasgowUK
  3. 3.Laboratory of Biophysics and Surface Analysis, School of PharmacyThe University of NottinghamNottinghamUK

Personalised recommendations