, Volume 17, Issue 3, pp 459–494 | Cite as

Microfibrillated cellulose and new nanocomposite materials: a review

  • István Siró
  • David Plackett


Due to their abundance, high strength and stiffness, low weight and biodegradability, nano-scale cellulose fiber materials (e.g., microfibrillated cellulose and bacterial cellulose) serve as promising candidates for bio-nanocomposite production. Such new high-value materials are the subject of continuing research and are commercially interesting in terms of new products from the pulp and paper industry and the agricultural sector. Cellulose nanofibers can be extracted from various plant sources and, although the mechanical separation of plant fibers into smaller elementary constituents has typically required high energy input, chemical and/or enzymatic fiber pre-treatments have been developed to overcome this problem. A challenge associated with using nanocellulose in composites is the lack of compatibility with hydrophobic polymers and various chemical modification methods have been explored in order to address this hurdle. This review summarizes progress in nanocellulose preparation with a particular focus on microfibrillated cellulose and also discusses recent developments in bio-nanocomposite fabrication based on nanocellulose.


Microfibrillated cellulose Nanocellulose Nanofibrils Nanocomposites Bacterial cellulose 



The authors would like to express their gratitude for the assistance of Vimal Katiyar (Risø-DTU) with TEM imaging, as illustrated in Fig. 3. Funding provided by the Danish Research Council for Technology and Production Sciences to support the research of István Siró is hereby gratefully acknowledged.


  1. Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278CrossRefGoogle Scholar
  2. Ahola S, Österberg M, Laine J (2008a) Cellulose nanofibrils-adsorption with poly(amideamine) epichlorohydrin studied by QCM-D and application as a paper strength additive. Cellulose 15:303–314CrossRefGoogle Scholar
  3. Ahola S, Salmi J, Johansson LS, Laine J, Österberg M (2008b) Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions. Biomacromolecules 9:1273–1282CrossRefGoogle Scholar
  4. Akbari Z, Ghomashchi T, Moghadam S (2007) Improvement in food packaging industry with biobased nanocomposites. Int J Food Eng 3:1–24Google Scholar
  5. Aksoy EA, Akata B, Bac N, Hasirci N (2007) Preparation and characterization of zeolite beta-polyurethane composite membranes. J Appl Polym Sci 104:3378–3387CrossRefGoogle Scholar
  6. Alemdar A, Sain M (2008a) Isolation and characterization of nanofibers from agricultural residues—Wheat straw and soy hulls. Bioresour Technol 99:1664–1671CrossRefGoogle Scholar
  7. Alemdar A, Sain M (2008b) Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos Sci Technol 68:557–565CrossRefGoogle Scholar
  8. Alvarez VA, Terenzi A, Kenny JM, Vázquez A (2004) Melt rheological behavior of starch-based matrix composites reinforced with short sisal fibers. Polym Eng Sci 44:1907–1914CrossRefGoogle Scholar
  9. Andresen M, Stenius P (2007) Water-in-oil emulsions stabilized by hydrophobized microfibrillated cellulose. J Dispers Sci Technol 28:837–844CrossRefGoogle Scholar
  10. Andresen M, Johansson LS, Tanem BS, Stenius P (2006) Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13:665–677CrossRefGoogle Scholar
  11. Andresen M, Stenstad P, Moretro T, Langsrud S, Syverud K, Johansson LS, Stenius P (2007) Nonleaching antimicrobial films prepared from surface-modified microfibrillated cellulose. Biomacromolecules 8:2149–2155CrossRefGoogle Scholar
  12. Ankerfors M, Lindström T (2007) On the manufacture and uses of nanocellulose. In the 9th International Conference on Wood & Biofiber Plastic Composites May 21–23, 2007, MadisonGoogle Scholar
  13. Anonymous (1983a) Strengthening of paper. Jpn Kokai Tokkyo Koho 82-79609:4Google Scholar
  14. Anonymous (1983b) Coating compositions for paper. Jpn Kokai Tokkyo Koho 82-75004:3Google Scholar
  15. Auad ML, Contos VS, Nutt S, Aranguren MI, Marcovich NE (2008) Characterization of nanocellulose-reinforced shape memory polyurethanes. Polym Int 57:651–659CrossRefGoogle Scholar
  16. Aulin C, Varga I, Claesson PM, Wågberg L, Lindström T (2008) Buildup of polyelectrolyte multilayers of polyethyleneimine and microfibrillated cellulose studied by in situ dual-polarization interferometry and quartz crystal microbalance with dissipation. Langmuir 24:2509–2518CrossRefGoogle Scholar
  17. Aulin C, Ahola S, Josefsson P, Nishino T, Hirose Y, Österberg M, Wågberg L (2009) Nanoscale cellulose films with different crystallinities and mesostructures–Their surface properties and interaction with water. Langmuir 25:7675–7685CrossRefGoogle Scholar
  18. Averous L (2004) Biodegradable multiphase systems based on plasticized starch: a review. J Macromol Sci-Polym Rev C44:231–274Google Scholar
  19. Baiardo M, Frisoni G, Scandola M, Rimelen M, Lips D, Ruffieux K, Wintermantel E (2003) Thermal and mechanical properties of plasticized poly(L-lactic acid). J Appl Polym Sci 90:1731–1738CrossRefGoogle Scholar
  20. Barud HS, Barrios C, Regiani T, Marques RFC, Verelst M, Dexpert-Ghys J, Messaddeq Y, Ribeiro SJL (2008) Self-supported silver nanoparticles containing bacterial cellulose membranes. Mater Sci Eng C-Biomim Supramol Syst 28:515–518Google Scholar
  21. Bataille P, Ricard L, Sapieha S (1989) Effects of cellulose fibers in polypropylene composites. Polym Compos 10:103–108CrossRefGoogle Scholar
  22. Berghem ER, Pettersson LG (1973) Mechanism of enzymatic cellulose degradation—purification of a cellulolytic enzyme from trichoderma-viride active on highly ordered cellulose. Eur J Biochem 37:21–30CrossRefGoogle Scholar
  23. Berglund L (2006) New concepts in natural fiber composites. Proceedings of the 27th Ris¢ International Symposium on Materials Science: Polymer Composite Materials for Wind Power Turbines :1-9Google Scholar
  24. Bhatnagar A, Sain M (2005) Processing of cellulose nanofiber-reinforced composites. J Reinf Plast Compos 24:1259–1268CrossRefGoogle Scholar
  25. Bhattacharya D, Germinario LT, Winter WT (2008) Isolation, preparation and characterization of cellulose microfibers obtained from bagasse. Carbohydr Polym 73:371–377CrossRefGoogle Scholar
  26. Bigg DM (2005) Polylactide copolymers: effect of copolymer ratio and end capping on their properties. Adv Polym Technol 24:69–82CrossRefGoogle Scholar
  27. Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274CrossRefGoogle Scholar
  28. Bonini C, Heux L, Cavaille JY, Lindner P, Dewhurst C, Terech P (2002) Rodlike cellulose whiskers coated with surfactant: a small-angle neutron scattering characterization. Langmuir 18:3311–3314CrossRefGoogle Scholar
  29. Brown RM (2004) Bacterial cellulose: its potential for new products of commerce. Abstr Pap Am Chem Soc 227:U303–U303Google Scholar
  30. Brown EE, Laborie MPG (2007) Bloengineering bacterial cellulose/poly(ethylene oxide) nanocomposites. Biomacromolecules 8:3074–3081CrossRefGoogle Scholar
  31. Bruce DM, Hobson RN, Farrent JW, Hepworth DG (2005) High-performance composites from low-cost plant primary cell walls. Compos Part A-Appl Sci Manufact 36:1486–1493CrossRefGoogle Scholar
  32. Cao X, Chen Y, Chang PR, Muir AD, Falk G (2008) Starch-based nanocomposites reinforced with flax cellulose nanocrystals. Express Polym Lett 2:502–510CrossRefGoogle Scholar
  33. Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102–107CrossRefGoogle Scholar
  34. Chakraborty A, Sain M, Kortschot M, Cutler S (2007) Dispersion of wood microfibers in a matrix of thermoplastic starch and starch-polylactic acid blend. J Biobased Mater Bioenergy 1:71–77Google Scholar
  35. Chen RH, Lin WC, Lin JH (1994) Effects of pH, ionic-strength, and type of anion on the rheological properties of chitosan solutions. Acta Polymerica 45:41–46CrossRefGoogle Scholar
  36. Cheng Q, Wang SQ, Rials TG, Lee SH (2007) Physical and mechanical properties of polyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulose fibers. Cellulose 14:593–602CrossRefGoogle Scholar
  37. Chenite A, Buschmann M, Wang D, Chaput C, Kandani N (2001) Rheological characterisation of thermogelling chitosan/glycerol-phosphate solutions. Carbohydr Polym 46:39–47CrossRefGoogle Scholar
  38. Ciechanska D (2004) Multifunctional bacterial cellulose/chitosan composite materials for medical applications. Fibres and Text in East Eur 12:69–72Google Scholar
  39. Clowes FAL, Juniper BE et al (eds) (1968) Plant cells. Blackwell Scientific Publications, Oxford, UKGoogle Scholar
  40. Crini G, Badot PM (2008) Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog Polym Sci 33:399–447CrossRefGoogle Scholar
  41. Cyras VP, Manfredi LB, Ton-That MT, Vázquez A (2008) Physical and mechanical properties of thermoplastic starch/montmorillonite nanocomposite films. Carbohydr Polym 73:55–63CrossRefGoogle Scholar
  42. Czaja W, Romanovicz D, Brown RM (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11:403–411CrossRefGoogle Scholar
  43. Dalmas F, Cavaillé JY, Gauthier C, Chazeau L, Dendievel R (2007) Viscoelastic behavior and electrical properties of flexible nanofiber filled polymer nanocomposites. Influence of processing conditions. Compos Sci Technol 67:829–839CrossRefGoogle Scholar
  44. de Rodriguez NLG, Thielemans W, Dufresne A (2006) Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13:261–270CrossRefGoogle Scholar
  45. Decher G, Schlenoff JB (2003) Multilayer thin films: sequential assembly of nanocomposite materials. Wiley WCH, WeiheimGoogle Scholar
  46. Dinand E, Chanzy H, Vignon MR (1996a) Parenchymal cell cellulose from sugar beet pulp. Cellulose 3:183–188CrossRefGoogle Scholar
  47. Dinand E, Alalin M, Chanzy H, Vincent I, Vignon MR (1996b) Microfibrillated cellulose and process for making the same from vegetable pulps having primary walls, especially from sugar beet pulp. Eur. Pat. Appl. 96–400261;95–1460Google Scholar
  48. Dinand E, Chanzy H, Vignon MR (1999) Suspensions of cellulose microfibrils from sugar beet pulp. Food Hydrocoll 13:275–283CrossRefGoogle Scholar
  49. Ding B, Kimura E, Sato T, Fujita S, Shiratori S (2004) Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning. Polymer 45:1895–1902CrossRefGoogle Scholar
  50. Duanmu J, Gamstedt EK, Rosling A (2007) Hygromechanical properties of composites of crosslinked allylglycidyl-ether modified starch reinforced by wood fibres. Compos Sci Technol 67:3090–3097CrossRefGoogle Scholar
  51. Duda A, Penczek S (2003) Polylactide [poly(lactic acid)]: synthesis, properties and applications. Polimery 48:16–27Google Scholar
  52. Dufresne A, Vignon MR (1998) Improvement of starch film performances using cellulose microfibrils. Macromolecules 31:2693–2696CrossRefGoogle Scholar
  53. Dufresne A, Cavaille JY, Vignon MR (1997) Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64:1185–1194CrossRefGoogle Scholar
  54. Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch-cellulose microfibril composites. J Appl Polym Sci 76:2080–2092CrossRefGoogle Scholar
  55. Dufresne A, Dupeyre D, Paillet M (2003) Lignocellulosic flour-reinforced poly(hydroxybutyrate-co-valerate) composites. J Appl Polym Sci 87:1302–1315CrossRefGoogle Scholar
  56. Dujardin E, Blaseby M, Mann S (2003) Synthesis of mesoporous silica by sol-gel mineralisation of cellulose nanorod nematic suspensions. J Mater Chem 13:696–699CrossRefGoogle Scholar
  57. Durango AM, Soares NFF, Benevides S, Teixeira J, Carvalho M, Wobeto C, Andrade NJ (2006) Development and evaluation of an edible antimicrobial film based on yam starch and chitosan. Packag Technol Sci 19:55–59CrossRefGoogle Scholar
  58. Eichhorn SJ, Baillie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufresne A, Entwistle KM, Herrera-Franco PJ, Escamilla GC, Groom L, Hughes M, Hill C, Rials TG, Wild PM (2001) Review: current international research into cellulosic fibres and composites. J Mater Sci 36:2107–2131CrossRefGoogle Scholar
  59. El-Saied H, Basta AH, Gobran RH (2004) Research progress in friendly environmental technology for the production of cellulose products (bacterial cellulose and its application). Polym Plast Technol Eng 43:797–820CrossRefGoogle Scholar
  60. Eriksen O, Syverud K, Gregersen O (2008) The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper. Nordic Pulp Pap Res J 23(3):299–304CrossRefGoogle Scholar
  61. Fernández A, Sánchez MD, Ankerfors M, Lagaron JM (2008) Effects of ionizing radiation in ethylene-vinyl alcohol copolymers and in composites containing microfibrillated cellulose. J Appl Polym Sci 109:126–134CrossRefGoogle Scholar
  62. Forssell P, Lahtinen R, Lahelin M, Myllarinen P (2002) Oxygen permeability of amylose and amylopectin films. Carbohydr Polym 47:125–129CrossRefGoogle Scholar
  63. Fukuzumi H, Saito T, Wata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165CrossRefGoogle Scholar
  64. Gällstedt M, Hedenqvist MS (2006) Packaging-related mechanical and barrier properties of pulp-fiber-chitosan sheets. Carbohydr Polym 63:46–53CrossRefGoogle Scholar
  65. Goussé C, Chanzy H, Cerrada ML, Fleury E (2004) Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer 45:1569–1575CrossRefGoogle Scholar
  66. Grande CJ, Torres FG, Gomez CM, Troncoso OP, Canet-Ferrer J, Martinez-Pastor J (2008) Morphological characterisation of bacterial cellulose-starch nanocomposites. Polym Polym Compos 16:181–185Google Scholar
  67. Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297:803–807CrossRefGoogle Scholar
  68. Gruber E, Granzow C (1996) Preparing cationic pulp by graft copolymerisation.1. Synthesis and characterization. Papier 50:293Google Scholar
  69. Guhados G, Wan WK, Hutter JL (2005) Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21:6642–6646CrossRefGoogle Scholar
  70. Gunatillake P, Mayadunne R, Adhikari R (2008) Recent developments in biodegradable synthetic polymers. Biotechnol Annu Rev 12:301–347CrossRefGoogle Scholar
  71. Gupta AP, Kumar V (2007) New emerging trends in synthetic biodegradable polymers—Polylactide: a critique. Eur Polym J 43:4053–4074CrossRefGoogle Scholar
  72. Habibi Y, Vignon MR (2008) Optimization of cellouronic acid synthesis by TEMPO-mediated oxidation of cellulose III from sugar beet pulp. Cellulose 15:177–185CrossRefGoogle Scholar
  73. Habibi Y, Mahrouz M, Vignon MR (2009) Microfibrillated cellulose from the peel of prickly pear fruits. Food Chem 115:423–429CrossRefGoogle Scholar
  74. Hafren J, Zou WB, Cordova A (2006) Heterogeneous ‘organoclick’ derivatization of polysaccharides. Macromol Rapid Commun 27:1362–1366CrossRefGoogle Scholar
  75. Hao AY, Geng YY, Xu Q, Lu ZY, Yu L (2008) Study of different effects on foaming process of biodegradable PLA/starch composites in supercritical/compressed carbon dioxide. J Appl Polym Sci 109:2679–2686CrossRefGoogle Scholar
  76. Harada M, Ohya T, Iida K, Hayashi H, Hirano K, Fukuda H (2007) Increased impact strength of biodegradable poly(lactic acid)/poly(butylene succinate) blend composites by using isocyanate as a reactive processing agent. J Appl Polym Sci 106:1813–1820CrossRefGoogle Scholar
  77. Hashiba M (2009) Thermoplastic resin compositions containing cellulose nanofibers with good bending properties. PCT Int Appl. 2008-JP58502; 2007–195163:24Google Scholar
  78. Hassan CM, Peppas NA (2000) Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Biopolym/PVA Hydrogels/Anionic Polym Nanocomposites 153:37–65CrossRefGoogle Scholar
  79. Hayashi H, Shimo T (2006) Automobile outside plates with good surface smoothness from cellulose fiber prepregs. Jpn. Kokai Tokkyo Koho 2005–136053:9Google Scholar
  80. Henriksson M, Berglund LA (2007) Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. J Appl Polym Sci 106:2817–2824CrossRefGoogle Scholar
  81. Henriksson G, Nutt A, Henriksson H, Pettersson B, Stahlberg J, Johansson G, Pettersson G (1999) Endoglucanase 28 (cel12A), a new Phanerochaete chrysosporium cellulase. Eur J Biochem 259:88–95CrossRefGoogle Scholar
  82. Henriksson G, Christiernin M, Agnemo R (2005) Monocomponent endoglucanase treatment increases the reactivity of softwood sulfite dissolving pulp. J Ind Microbiol Biotechnol 32:211–214CrossRefGoogle Scholar
  83. Henriksson G, Henriksson M (2004) Biofibre Materials Centre (BiMaC) Newsletter No 5/04.
  84. Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441CrossRefGoogle Scholar
  85. Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585CrossRefGoogle Scholar
  86. Herrick FW (1984) Microfibrillated cellulose. U.S. Patent 83-479556:4Google Scholar
  87. Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci: Appl Polym Symp 37:797–813Google Scholar
  88. Heux L, Chauve G, Bonini C (2000) Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16:8210–8212CrossRefGoogle Scholar
  89. Horiuchi T, Fukuda A, Yano H (2008) Manufacturing method of phenolic resin compositions containing cellulose nanofibers. Jpn Kokai Tokkyo Koho 2007-91266:10Google Scholar
  90. Hosokawa J, Nishiyama M, Yoshihara K, Kubo T (1990) Biodegradable film derived from chitosan and homogenized cellulose. Ind Eng Chem Res 29:800–805CrossRefGoogle Scholar
  91. Hosokawa J, Nishiyama M, Yoshihara K, Kubo T, Terabe A (1991) Reaction between chitosan and cellulose on biodegradable composite film formation. Ind Eng Chem Res 30:788–792CrossRefGoogle Scholar
  92. Huang MF, Yu JG, Ma XF (2004) Studies on the properties of Montmorillonite-reinforced thermoplastic starch composites. Polymer 45:7017–7023CrossRefGoogle Scholar
  93. Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. Bioresources 3:929Google Scholar
  94. Huda MS, Drzal LT, Mohanty AK, Misra M (2006) Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly(lactic acid) (PLA) composites: a comparative study. Compos Sci Technol 66:1813–1824CrossRefGoogle Scholar
  95. Huda MS, Drzal LT, Mohanty AK, Misra M (2008) Effect of fiber surface-treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers. Compos Sci Technol 68:424–432CrossRefGoogle Scholar
  96. Hult EL, Larsson PT, Iversen T (2000) A comparative CP/MAS C-13-NMR study of cellulose structure in spruce wood and kraft pulp. Cellulose 7:35–55CrossRefGoogle Scholar
  97. Hult EL, Larsson PT, Iversen T (2001) Cellulose fibril aggregation—an inherent property of kraft pulps. Polymer 42:3309–3314CrossRefGoogle Scholar
  98. Hult EL, Larsson PT, Iversen T (2002) A comparative CP/MAS C-13-NMR study of the supermolecular structure of polysaccharides in sulfite and kraft pulps. Holzforschung 56:179–184CrossRefGoogle Scholar
  99. Hult EL, Iversen T, Sugiyama J (2003) Characterization of the supermolecular structure of cellulose in wood pulp fibres. Cellulose 10:103–110CrossRefGoogle Scholar
  100. Ifuku S, Nogi M, Abe K, Handa K, Nakatsubo F, Yano H (2007) Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules 8:1973–1978CrossRefGoogle Scholar
  101. Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35:261–270CrossRefGoogle Scholar
  102. Imai T, Putaux JL, Sugiyama J (2003) Geometric phase analysis of lattice images from algal cellulose microfibrils. Polymer 44:1871–1879CrossRefGoogle Scholar
  103. Ishikawa H, Ide S, Kawamata C (1994) Manufacture of microfibrillated cellulose fibers. Jpn Kokai Tokkyo Koho 92-165820:5Google Scholar
  104. Isogai A, Kato Y (1998) Preparation of polyglucuronic acid from cellulose by TEMPO-mediated oxidation. Cellulose 5:153–164CrossRefGoogle Scholar
  105. Isogai A, Saito T, Okita Y (2008) Manufacture of cellulose nanofibers, cellulose nanofibers manufactured thereby, and aqueous suspensions thereof. Jpn Kokai Tokkyo Koho 2007-160604:12Google Scholar
  106. Iwamoto S, Nakagaito AN, Yano H, Nogi M (2005) Optically transparent composites reinforced with plant fiber-based nanofibers. Appl Phys A-Mater Sci Process 81:1109–1112CrossRefGoogle Scholar
  107. Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A-Mater Sci Process 89:461–466CrossRefGoogle Scholar
  108. Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9:1022–1026CrossRefGoogle Scholar
  109. Iwatake A, Nogi M, Yano H (2008) Cellulose nanofiber-reinforced polylactic acid. Compos Sci Technol 68:2103–2106CrossRefGoogle Scholar
  110. Janardhnan S, Sain M (2006) Isolation of cellulose microfibrils—An enzymathic approach. Bioresources 1:176–188Google Scholar
  111. Jang WY, Shin BY, Lee TX, Narayan R (2007) Thermal properties and morphology of biodegradable PLA/starch compatibilized blends. J Ind Eng Chem 13:457–464Google Scholar
  112. John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos 29:187–207CrossRefGoogle Scholar
  113. John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71:343–364CrossRefGoogle Scholar
  114. John MJ, FranciS B, Varughese KT, Thomas S (2008) Effect of chemical modification on properties of hybrid fiber biocomposites. Compos Part A-Appl Sci Manufact 39:352–363CrossRefGoogle Scholar
  115. Juntaro J, Pommet M, Mantalaris A, Shaffer M, Bismarck A (2007) Nanocellulose enhanced interfaces in truly green unidirectional fibre reinforced composites. Compos Interfaces 14:753–762CrossRefGoogle Scholar
  116. Juntaro J, Pommet M, Kalinka G, Mantalaris A, Shaffer MSP, Bismarck A (2008) Creating hierarchical structures in renewable composites by attaching bacterial cellulose onto sisal fibers. Adv Mater 20:3122–3126CrossRefGoogle Scholar
  117. Kaczmarek H, Bajer K, Galka P, Kotnowska B (2007) Photodegradation studies of novel biodegradable blends based on poly(ethylene oxide) and pectin. Polym Degrad Stab 92:2058–2069CrossRefGoogle Scholar
  118. Kadokawa J, Murakami M, Takegawa A, Kaneko Y (2009) Preparation of cellulose-starch composite gel and fibrous material from a mixture of the polysaccharides in ionic liquid. Carbohydr Polym 75:180–183CrossRefGoogle Scholar
  119. Katsura T (1988) Manufacture of paper containing microparticles with good strength. Jpn Kokai Tokkyo Koho 87-150709:5Google Scholar
  120. Kim DY, Nishiyama Y, Kuga S (2002) Surface acetylation of bacterial cellulose. Cellulose 9:361–367CrossRefGoogle Scholar
  121. Kim EG, Kim BS, Kim DS (2007) Physical properties and morphology of polycaprolactone/starch/pine-leaf composites. J Appl Polym Sci 103:928–934CrossRefGoogle Scholar
  122. Kitagawa K, Yano H (2008) Microfibrillated cellulose composite resins and their manufacture. Jpn Kokai Tokkyo Koho 2007-142560:18Google Scholar
  123. Klemm D, Schumann D, Kramer F, Hessler N, Hornung M, Schmauder HP, Marsch S (2006) Nanocelluloses as innovative polymers in research and application. Polysaccharides 205:49–96CrossRefGoogle Scholar
  124. Koga S (2000) Gas-barrier and moisture-resistant paper laminate. Jpn Kokai Tokkyo Koho 99-110576:7Google Scholar
  125. Krässig HA (1993) Cellulose-structure. Accessibility and Reactivity. Gordon and Breach Science Publishers, Yverdon, Switzerland, pp 307–314Google Scholar
  126. Kumar AP, Singh RP (2008) Biocomposites of cellulose reinforced starch: improvement of properties by photo-induced crosslinking. Bioresour Technol 99:8803–8809CrossRefGoogle Scholar
  127. Lai SM, Don TM, Huang YC (2006) Preparation and properties of biodegradable thermoplastic starch/poly(hydroxy butyrate) blends. J Appl Polym Sci 100:2371–2379CrossRefGoogle Scholar
  128. Lasseuguette E, Roux D, Nishiyama Y (2008) Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp. Cellulose 15:425–433CrossRefGoogle Scholar
  129. Lee SH, Kim DJ, Kim JH, Lee DH, Sim SJ, Nam JD, Kye HS, Lee YK (2004) Compatibilization and properties of modified starch-poly(lactic acid) blend. Polymer-Korea 28:519–523Google Scholar
  130. Lee JM, Heitmann JA, Pawlak JJ (2007a) Local morphological and dimensional changes of enzyme-degraded cellulose materials measured by atomic force microscopy. Cellulose 14:643–653CrossRefGoogle Scholar
  131. Lee SY, Xu YX, Hanna MA (2007b) Tapioca starch-poly (lactic acid)-based nanocomposite foams as affected by type of nanoclay. Int Polym Process 22:429–435Google Scholar
  132. Leitner J, Hinterstoisser B, Wastyn M, Keckes J, Gindl W (2007) Sugar beet cellulose nanofibril-reinforced composites. Cellulose 14:419–425CrossRefGoogle Scholar
  133. Levis SR, Deasy PB (2001) Production and evaluation of size reduced grades of microcrystalline cellulose. Int J Pharm 213:13–24CrossRefGoogle Scholar
  134. Liao HT, Wu CS (2008) New biodegradable blends prepared from polylactide, titanium tetraisopropylate, and starch. J Appl Polym Sci 108:2280–2289CrossRefGoogle Scholar
  135. Lindström T (2007) Towards new perspectives in paper chemistry. Das Papier IPW 10:32–36Google Scholar
  136. Lindström T, Ankerfors M, Henriksson G (2007) Method for treating chemical pulp for manufacturing microfibrillated cellulose. PCT Int Appl. 2007-SE82; 2006-272:14Google Scholar
  137. Ljungberg N, Wesslen B (2002) The effects of plasticizers on the dynamic mechanical and thermal properties of poly(lactic acid). J Appl Polym Sci 86:1227–1234CrossRefGoogle Scholar
  138. Lönnberg H, Fogelström L, Malström E, Zhou Q, Berglund L, Hult A (2008) Microfibrillated cellulose films grafted with poly(ε-caprolactone)—for biocomposite applications. Nordic Polymer Days, 11–13 June, StockholmGoogle Scholar
  139. López-Rubio A, Lagaron JM, Ankerfors M, Lindström T, Nordqvist D, Mattozzi A, Hedenqvist MS (2007) Enhanced film forming and film properties of amylopectin using micro-fibrillated cellulose. Carbohydr Polym 68:718–727CrossRefGoogle Scholar
  140. Lu J, Askeland P, Drzal LT (2008a) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49:1285–1296CrossRefGoogle Scholar
  141. Lu J, Wang T, Drzal LT (2008b) Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials. Compos Part A-Appl Sci Manufact 39:738–746CrossRefGoogle Scholar
  142. Ma XF, Yu JG (2004a) Formamide as the plasticizer for thermoplastic starch. J Appl Polym Sci 93:1769–1773CrossRefGoogle Scholar
  143. Ma XF, Yu JG (2004b) Studies on the properties of formamide plasticized-thermoplastic starch. Acta Polymerica Sinica 35(2):240–245Google Scholar
  144. Ma XF, Yu JG, Kennedy JF (2005) Studies on the properties of natural fibers-reinforced thermoplastic starch composites. Carbohydr Polym 62:19–24CrossRefGoogle Scholar
  145. Ma XF, Chang PR, Yu JG (2008a) Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites. Carbohydr Polym 72:369–375CrossRefGoogle Scholar
  146. Ma XF, Chang PR, Yu JG, Wang N (2008b) Preparation and properties of biodegradable poly(propylene carbonate)/thermoplastic dried starch composites. Carbohydr Polym 71:229–234CrossRefGoogle Scholar
  147. Maeda H, Nakajima M, Hagiwara T, Sawaguchi T, Yano S (2006) Bacterial cellulose/silica hybrid fabricated by mimicking biocomposites. J Mater Sci 41:5646–5656CrossRefGoogle Scholar
  148. Malainine ME, Mahrouz M, Dufresne A (2005) Thermoplastic nanocomposites based on cellulose microfibrils from Opuntia ficus-indica parenchyma cell. Compos Sci Technol 65:1520–1526CrossRefGoogle Scholar
  149. Mathew AP, Oksman K, Sain M (2005) Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 97:2014–2025CrossRefGoogle Scholar
  150. Mathew AP, Chakraborty A, Oksman K, Sain M (2006) The structure and mechanical properties of cellulose nanocomposites prepared by twin screw extrusion. In: Oksman K, Sain M (eds) Cellulose nanocomposites: processing, characterization, and properties. American Chemical Society, Washington DC 938:114–131Google Scholar
  151. Mathew V, Nair CKNU, Sivasankaran P (2007) Polymeric material of cellulose nanofiber prepared from wastes of plantain and banana plants. Indian Pat Appl. 2006-CH2005:13Google Scholar
  152. Mathew AP, Thielemans W, Dufresne A (2008) Mechanical properties of nanocomposites from sorbitol plasticized starch and tunicin whiskers. J Appl Polym Sci 109:4065–4074CrossRefGoogle Scholar
  153. Mathew V, Nair CKNU, Sivasankaran P (2009) Cellulose nanofiber produced from water hyacinth. Indian Pat Appl. 2007-CH2506:14Google Scholar
  154. Matsuda Y, Hirose M, Ueno K (2001) Microfibrillated ultrafine celluloses for coated and tinted papers and their microfibrillating and papermaking processes. U.S. Patent 97-886262:10Google Scholar
  155. Mehta R, Kumar V, Bhunia H, Upadhyay SN (2005) Synthesis of poly(lactic acid): a review. J Macromol Sci-Polym Rev C45:325–349CrossRefGoogle Scholar
  156. Millon LE, Wan WK (2006) The polyvinyl alcohol-bacterial cellulose system as a new nanocomposite for biomedical applications. J Biomed Mater Res Part B-Appl Biomater 79B:245–253CrossRefGoogle Scholar
  157. Miyazaki Y, Shimazaki Y, Takesawa Y (2008) Fiber-reinforced composite resin compositions with good even thermal conductivity. Jpn Kokai Tokkyo Koho 2007-89672:12Google Scholar
  158. Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276:1–24CrossRefGoogle Scholar
  159. Mondragón M, Arroyo K, Romero-García J (2008) Biocomposites of thermoplastic starch with surfactant. Carbohydr Polym 74:201–208CrossRefGoogle Scholar
  160. Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159CrossRefGoogle Scholar
  161. Myllarinen P, Buleon A, Lahtinen R, Forssell P (2002a) The crystallinity of amylose and amylopectin films. Carbohydr Polym 48:41–48CrossRefGoogle Scholar
  162. Myllarinen P, Partanen R, Seppala J, Forssell P (2002b) Effect of glycerol on behaviour of amylose and amylopectin films. Carbohydr Polym 50:355–361CrossRefGoogle Scholar
  163. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798CrossRefGoogle Scholar
  164. Nakagaito AN, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phys A-Mater Sci Process 78:547–552CrossRefGoogle Scholar
  165. Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A-Mater Sci Process 80:155–159CrossRefGoogle Scholar
  166. Nakagaito AN, Yano H (2008a) Toughness enhancement of cellulose nanocomposites by alkali treatment of the reinforcing cellulose nanofibers. Cellulose 15:323–331CrossRefGoogle Scholar
  167. Nakagaito AN, Yano H (2008b) The effect of fiber content on the mechanical and thermal expansion properties of biocomposites based on microfibrillated cellulose. Cellulose 15:555–559CrossRefGoogle Scholar
  168. Nakagaito AN, Iwamoto S, Yano H (2005) Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Appl Phys A-Mater Sci Process 80:93–97CrossRefGoogle Scholar
  169. Nakagaito AN, Fujimura A, Sakai T, Hama Y, Yano H (2009) Production of microfibrillated cellulose (MFC)-reinforced polylactic acid (PLA) nanocomposites from steets obtained by a papermaking-like process. Comp Sci Techn 69:1293–1297CrossRefGoogle Scholar
  170. Nakahara S (2008) Resin composite materials containing surface-treated microfibrillated cellulose (MFC) reinforcement, their manufacture, and their articles. Jpn Kokai Tokkyo Koho 2007-17153:10Google Scholar
  171. Nakahara S, Saito E, Asada T (2008) Manufacture of microfibrillated cellulose-polymer composites with high mechanical strength, aqueous dispersions therefore, and manufacture of moldings comprising them. Jpn Kokai Tokkyo Koho 2007-82938:10Google Scholar
  172. Nakamatsu J, Torres FG, Troncoso OP, Yuan ML, Boccaccini AR (2006) Processing and characterization of porous structures from chitosan and starch for tissue engineering scaffolds. Biomacromolecules 7:3345–3355CrossRefGoogle Scholar
  173. Ning W, Jiugao Y, Xiaofei M (2008) Preparation and characterization of compatible thermoplastic dry starch/poly(lactic acid). Polym Compos 29:551–559CrossRefGoogle Scholar
  174. Nishama M, Hosokawa J, Yoshihara K, Kubo T, Maruyama K, Kaneoka K, Ueda A, Tateishi K, Kondo K (1993) Cellulose-containing biodegradable films and sheets with good flexibility and their manufacture. Jpn Kokai Tokkyo Koho 91-339964:4Google Scholar
  175. Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37:7683–7687CrossRefGoogle Scholar
  176. Nogi M, Yano H (2008) Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv Mater 20:1849–1852CrossRefGoogle Scholar
  177. Nogi M, Yano H (2009) Optically transparent nanofiber sheets by deposition of transparent materials: a concept for roll-to-roll processing. Appl Phys Lett 94(23):1–3CrossRefGoogle Scholar
  178. Nogi M, Handa K, Nakagaito AN, Yano H (2005) Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymer matrix. Appl Phys Lett 87(24):1–3CrossRefGoogle Scholar
  179. Nogi M, Abe K, Handa K, Nakatsubo F, Ifuku S, Yano H (2006a) Property enhancement of optically transparent bionanofiber composites by acetylation. Appl Phys Lett 89(23):1–3CrossRefGoogle Scholar
  180. Nogi M, Ifuku S, Abe K, Handa K, Nakagaito AN, Yano H (2006b) Fiber-content dependency of the optical transparency and thermal expansion of bacterial nanofiber reinforced composites. Appl Phys Lett 88(13):1–3CrossRefGoogle Scholar
  181. Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21:1595–1598CrossRefGoogle Scholar
  182. Nordqvist D, Idermark J, Hedenqvist MS (2007) Enhancement of the wet properties of transparent chitosan-acetic-acid-salt films using microfibrillated cellulose. Biomacromolecules 8:2398–2403CrossRefGoogle Scholar
  183. Ohad I, Mejzler D (1965) On ultrastructure of cellulose microfibrils. J Pol Sci Part-A-Gen-Pap 3:399–406CrossRefGoogle Scholar
  184. Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66:2776–2784CrossRefGoogle Scholar
  185. Okubo K, Fujii T, Yamashita N (2005) Improvement of interfacial adhesion in bamboo polymer composite enhanced with micro-fibrillated cellulose. JSME Int J Series A-Solid Mech Mater Eng 48:199–204Google Scholar
  186. Okubo K, Fujii T, Thostenson ET (2009) Multi-scale hybrid biocomposite: processing and mechanical characterization of bamboo fiber reinforced PLA with microfibrillated cellulose. Compos Part A-Appl Sci Manufact 40:469–475CrossRefGoogle Scholar
  187. Omura M, Tsukegi T, Shirai Y, Nishida H, Endo T (2006) Thermal degradation behavior of poly(lactic acid) in a blend with polyethylene. Ind Eng Chem Res 45:2949–2953CrossRefGoogle Scholar
  188. Pääkkö M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941CrossRefGoogle Scholar
  189. Pääkkö M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindström T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4:2492–2499CrossRefGoogle Scholar
  190. Page DH, Abbot J (1983) Changes in cellulose structure during pulping. Paperi Ja Puu-Pap Timber 65:797Google Scholar
  191. Pandey JK, Kumar AP, Misra M, Mohanty AK, Drzal LT, Singh RP (2005) Recent advances in biodegradable nanocomposites. J Nanosci Nanotechnol 5:497–526CrossRefGoogle Scholar
  192. Paradossi G, Cavalieri F, Chiessi E (2003) Poly(vinyl alcohol) as versatile biomaterial for potential biomedical applications. J Mater Sci-Mater Med 14:687–691CrossRefGoogle Scholar
  193. Park JW, Im SS (2003) Miscibility and morphology in blends of poly(L-lactic acid) and poly(vinyl acetate-co-vinyl alcohol). Polymer 44:4341–4354CrossRefGoogle Scholar
  194. Petersson L, Oksman K (2006) Biopolymer based nanocomposites: comparing layered silicates and microcrystalline cellulose as nanoreinforcement. Compos Sci Technol 66:2187–2196CrossRefGoogle Scholar
  195. Petersson L, Oksman K, Mathew AP (2006) Using maleic anhydride grafted poly(lactic acid) as a compatibilizer in poly(lactic acid)/layered-silicate nanocomposites. J Appl Polym Sci 102:1852–1862CrossRefGoogle Scholar
  196. Petersson L, Kvien I, Oksman K (2007) Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Compos Sci Technol 67:2535–2544CrossRefGoogle Scholar
  197. Plackett D, Andersen TL, Pedersen WB, Nielsen L (2003) Biodegradable composites based on L-polylactide and jute fibres. Compos Sci Technol 63:1287–1296CrossRefGoogle Scholar
  198. Plackett DV, Holm VK, Johansen P, Ndoni S, Nielsen PV, Sipilainen-Malm T, Södergård A, Verstichel S (2006) Characterization of L-polylactide and L-polylactide-polycaprolactone co-polymer films for use in cheese-packaging applications. Packag Technol Sci 19:1–24CrossRefGoogle Scholar
  199. Ranby BG (1952) The cellulose micelles. Tappi 35:53–58Google Scholar
  200. Reddy N, Yang Y (2005) Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol 23:22–27CrossRefGoogle Scholar
  201. Ren J, Liu Z, Ren T (2007) Mechanical and thermal properties of poly(lactic acid)/starch/montmorillonite biodegradable blends. Polym Polym Compos 15:633–638Google Scholar
  202. Rhim JW (2007) Potential use of biopolymer-based nanocomposite films in food packaging applications. Food Sci Biotechnol 16:691–709Google Scholar
  203. Rhim JW, Ng PKW (2007) Natural biopolymer-based nanocomposite films for packaging applications. Crit Rev Food Sci Nutr 47:411–433CrossRefGoogle Scholar
  204. Romhany G, Karger-Kocsis J, Czigany T (2003) Tensile fracture and failure behavior of thermoplastic starch with unidirectional and cross-ply flax fiber reinforcements. Macromol Mater Eng 288:699–707CrossRefGoogle Scholar
  205. Rosa DD, Volponi JE, Guedes CDF (2006) Biodegradation and the dynamic mechanical properties of starch gelatinization in poly(epsilon-caprolactone)/corn starch blends. J Appl Polym Sci 102:825–832CrossRefGoogle Scholar
  206. Saheb DN, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polym Technol 18:351–363CrossRefGoogle Scholar
  207. Sain MM, Bhatnagar A (2008) Manufacturing process of cellulose nanofibers from renewable feed stocks. U.S Pat Appl Publ 2004-936236; 2003-512912:19Google Scholar
  208. Saito T, Isogai A (2005) Ion-exchange behavior of carboxylate groups in fibrous cellulose oxidized by the TEMPO-mediated system. Carbohydr Polym 61:183–190CrossRefGoogle Scholar
  209. Saito T, Isogai A (2006) Introduction of aldehyde groups on surfaces of native cellulose fibers by TEMPO-mediated oxidation. Colloids Surf A-Physicochem Eng Asp 289:219–225CrossRefGoogle Scholar
  210. Saito T, Isogai A (2007) Wet strength improvement of TEMPO-oxidized cellulose sheets prepared with cationic polymers. Ind Eng Chem Res 46:773–780CrossRefGoogle Scholar
  211. Saito T, Yanagisawa M, Isogai A (2005) TEMPO-mediated oxidation of native cellulose: SEC-MALLS analysis of water-soluble and -insoluble fractions in the oxidized products. Cellulose 12:305–315CrossRefGoogle Scholar
  212. Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691CrossRefGoogle Scholar
  213. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491CrossRefGoogle Scholar
  214. Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10:1992–1996CrossRefGoogle Scholar
  215. Salmi J, Nypelö T, Österberg M, Laine J (2009) Layer structures formed by silica nanoparticles and cellulose nanofibrils with cationic polyacrylamide (C-PAM) on cellulose surface and their influence on interactions. Bioresources 4:602–625Google Scholar
  216. Samir MASA, Alloin F, Paillet M, Dufresne A (2004) Tangling effect in fibrillated cellulose reinforced nanocomposites. Macromolecules 37:4313–4316CrossRefGoogle Scholar
  217. Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626CrossRefGoogle Scholar
  218. Sanchavanakit N, Sangrungraungroj W, Kaomongkolgit R, Banaprasert T, Pavasant P, Phisalaphong M (2006) Growth of human keratinocytes and fibroblasts on bacterial cellulose film. Biotechnol Prog 22:1194–1199CrossRefGoogle Scholar
  219. Sánchez-García MD, Gimenez E, Lagaron JM (2008) Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohydr Polym 71:235–244CrossRefGoogle Scholar
  220. Sarazin P, Li G, Orts WJ, Favis BD (2008) Binary and ternary blends of polylactide, polycaprolactone and thermoplastic starch. Polymer 49:599–609CrossRefGoogle Scholar
  221. Seydibeyoglu MO, Oksman K (2008) Novel nanocomposites based on polyurethane and microfibrillated cellulose. Compos Sci Technol 68:908–914CrossRefGoogle Scholar
  222. Shibuya H, Hayashi T (2008) Manufacture of cellulose nanofibers by enzymatic treatment and cellulose nanofibers manufactured thereby. Jpn Kokai Tokkyo Koho 2006-337350:13Google Scholar
  223. Shoda M, Sugano Y (2005) Recent advances in bacterial cellulose production. Biotechnol Bioprocess Eng 10:1–8CrossRefGoogle Scholar
  224. Singh S, Ray SS (2007) Polylactide based nanostructured biomaterials and their applications. J Nanosci Nanotechnol 7:2596–2615CrossRefGoogle Scholar
  225. Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432CrossRefGoogle Scholar
  226. Siró I, Plackett D (2008) Characterization of microfibrillated cellulose (MFC) films made of different types of raw material. Nordic Polymer Days, 11-13 June, Stockholm, SwedenGoogle Scholar
  227. Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol 18:84–95CrossRefGoogle Scholar
  228. Sreekala MS, Goda K, Devi PV (2008) Sorption characteristics of water, oil and diesel in cellulose nanofiber reinforced corn starch resin/ramie fabric composites. Compos Interfaces 15:281–299CrossRefGoogle Scholar
  229. Stenstad P, Andresen M, Tanem BS, Stenius P (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15:35–45CrossRefGoogle Scholar
  230. Sumi H, Uchimura H, Kobayashi Y (2009) Resin composites containing surface-modified cellulose fibers and showing high mechanical strength and transparency, and their manufacture. Jpn Kokai Tokkyo Koho 2007-234422:18Google Scholar
  231. Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 69:1187–1192CrossRefGoogle Scholar
  232. Suzuki M, Hattori Y (2004) Method and apparatus for producing microfibrillated cellulose. PCT Int.Appl. 2003-JP8974; 2002-209548:51Google Scholar
  233. Svagan AJ, Samir MASA, Berglund LA (2007) Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules 8:2556–2563CrossRefGoogle Scholar
  234. Svagan AJ, Samir MASA, Berglund LA (2008) Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nanofibrils. Adv Mater 20:1263–1269CrossRefGoogle Scholar
  235. Svagan AJ, Hedenqvist MS, Berglund L (2009) Reduced water vapour sorption in cellulose nanocomposites with starch matrix. Compos Sci Technol 69:500–506CrossRefGoogle Scholar
  236. Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85CrossRefGoogle Scholar
  237. Tahiri C, Vignon MR (2000) TEMPO-oxidation of cellulose: synthesis and characterisation of polyglucuronans. Cellulose 7:177–188CrossRefGoogle Scholar
  238. Takagi H, Asano A (2008) Effects of processing conditions on flexural properties of cellulose nanofiber reinforced “green” composites. Compos Part A-Appl Sci Manufact 39:685–689CrossRefGoogle Scholar
  239. Takami T (1999) Manufacture of microfibrillated cellulose. Jpn Kokai Tokkyo Koho 97-274326:10Google Scholar
  240. Tamura N, Ban K, Takahashi S, Kasemura T, Obuchi S (2006) Application of poly(acetic acid)-based graft copolymer as a compatibilizer for poly(L-lactic acid)/poly(butylenesuccinate) blend system. J Adhes 82:355–373CrossRefGoogle Scholar
  241. Tanem BS, Kvien I, van Helvoort ATJ, Oksman K (2006) Morphology of cellulose and its nanocomposites. In: Oksman K, Sain M (eds) Cellulose Nanocomposites: Processing, Characterization, and Properties, American Chemical Society, Washington DC, 938:48-62Google Scholar
  242. Taniguchi T (2003) Nanofibrils from natural organic fibers as industrial materials. Jpn Kokai Tokkyo Koho 2001-353840:4Google Scholar
  243. Taniguchi T, Okamura K (1998) New films produced from microfibrillated natural fibres. Polym Int 47:291–294CrossRefGoogle Scholar
  244. Thire RMSM, Ribeiro TAA, Andrade CT (2006) Effect of starch addition on compression-molded poly(3-hydroxybutyrate)/starch blends. J Appl Polym Sci 100:4338–4347CrossRefGoogle Scholar
  245. Thomas H, Heine E, Wollseifen R, Cimpeanu C, Möller M (2005) Nanofibers from natural and inorganic polymers via electrospinning. Int Nonwovens J 14:18Google Scholar
  246. Tobushi H, Hara H, Yamada E, Hayashi S (1996a) Thermomechanical properties in a thin film of shape memory polymer of polyurethane series. Smart Mater Struct 5:483–491CrossRefGoogle Scholar
  247. Tobushi H, Hayashi S, Ikai A, Hara H (1996b) Thermomechanical properties of shape memory polymers of polyurethane series and their applications. J de Phys IV 6:377–384Google Scholar
  248. Tserki V, Matzinos P, Zafeiropoulos NE, Panayiotou C (2006) Development of biodegradable composites with treated and compatibilized lignocellulosic fibers. J Appl Polym Sci 100:4703–4710CrossRefGoogle Scholar
  249. Tsuji H, Fukui I (2003) Enhanced thermal stability of poly(lactide)s in the melt by enantiomeric polymer blending. Polymer 44:2891–2896CrossRefGoogle Scholar
  250. Turbak AF, Snyder FW, Sandberg KR (1983) J Appl Polym Sci: Appl Polym Symp 37:815–827Google Scholar
  251. Turbak AF, Snyder FW, Sandberg KR (1985) Microfibrillated cellulose. Patentschrift (Switz.) 81-3923:10Google Scholar
  252. Utsel S, Malström E, Carlmark A, Wågberg L (2008) Interactive nano fibrils. Nordic Polymer Days, 11–13 June, Stockholm, SwedenGoogle Scholar
  253. Virtanen T, Maunu SL, Tamminen T, Hortfing B, Liitia T (2008) Changes in fiber ultrastructure during various kraft pulping conditions evaluated by C-13 CPMAS NMR spectroscopy. Carbohydr Polym 73:156–163Google Scholar
  254. Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnas K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795CrossRefGoogle Scholar
  255. Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol 63:1259–1264CrossRefGoogle Scholar
  256. Wan WK, Hutter JL, Millon LE, Guhados G (2006) Bacterial cellulose and its nanocomposites for biomedical applications. In: Oksman K, Sain M (eds) Cellulose nanocomposites. Processing Characterization, and Properties. American Chemical Society, Washington DCGoogle Scholar
  257. Wang B, Sain M (2007a) Dispersion of soybean stock-based nanofiber in a plastic matrix. Polym Int 56:538–546CrossRefGoogle Scholar
  258. Wang B, Sain M (2007b) Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers. Compos Sci Technol 67:2521–2527CrossRefGoogle Scholar
  259. Wang B, Sain M (2007c) The effect of chemically coated nanofiber reinforcement on biopolymer based nanocomposites. Bioresources 2:371–388Google Scholar
  260. Wang YM, Rodriguez-Perez MA, Reis RL, Mano JF (2005) Thermal and thermomechanical behaviour of polycaprolactone and starch/polycaprolactone blends for biomedical applications. Macromol Mater Eng 290:792–801CrossRefGoogle Scholar
  261. Wang B, Sain M, Oksman K (2007) Study of structural morphology of hemp fiber from the micro to the nanoscale. Appl Compos Mater 14:89–103CrossRefGoogle Scholar
  262. Wang N, Yu JG, Chang PR, Ma XF (2008) Influence of formamide and water on the properties of thermoplastic starch/poly(lactic acid) blends. Carbohydr Polym 71:109–118CrossRefGoogle Scholar
  263. Werner O, Persson L, Nolte M, Fery A, Wågberg L (2008) Patterning of surfaces with nanosized cellulosic fibrils using microcontact printing and a lift-off technique. Soft Matter 4:1158–1160CrossRefGoogle Scholar
  264. Wu CS, Liao HT (2005) A new biodegradable blends prepared from polylactide and hyaluronic acid. Polymer 46:10017–10026CrossRefGoogle Scholar
  265. Xu YX, Kim KM, Hanna MA, Nag D (2005) Chitosan-starch composite film: preparation and characterization. Ind Crop Prod 21:185–192CrossRefGoogle Scholar
  266. Yano H, Ifuku S (2008) Surface-modified microfibrillated celluloses, their manufacture, and their polymer composites with high mechanical strength. Jpn Kokai Tokkyo Koho 2008-82027; 2007-78924:18Google Scholar
  267. Yano H, Nakagaito AN (2008) Microfibrillated cellulose having cellulose type-II crystalline structure, and molded article containing the microfibrillated cellulose. PCT Int.Appl. 2007-JP64005; 2006-197513:22Google Scholar
  268. Yano H, Nakahara S (2004) Bio-composites produced from plant microfiber bundles with a nanometer unit web-like network. J Mater Sci 39:1635–1638CrossRefGoogle Scholar
  269. Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153Google Scholar
  270. Yano H, Seki N, Ishida T (2008) Manufacture of nanofibers and nanofibers manufactured thereby. Jpn Kokai Tokkyo Koho 2007-2229:17Google Scholar
  271. Yoon SY, Deng YL (2006) Clay-starch composites and their application in papermaking. J Appl Polym Sci 100:1032–1038CrossRefGoogle Scholar
  272. Zhang HR, Tong MW (2007) Influence of hemicelluloses on the structure and properties of lyocell fibers. Polym Eng Sci 47:702–706CrossRefGoogle Scholar
  273. Zhang HR, Zhang HH, Tong MW, Shao HL, Hu XC (2008) Comparison of the structures and properties of lyocell fibers from high hemicellulose pulp and high alpha-cellulose pulp. J Appl Polym Sci 107:636–641CrossRefGoogle Scholar
  274. Zimmermann T, Pohler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6:754–761CrossRefGoogle Scholar
  275. Zimmermann T, Poehler E, Geiger T (2005a) Cellulose fibrils for polymer reinforcement. Abstr Pap Am Chem Soc 229:U313–U313Google Scholar
  276. Zimmermann T, Pohler E, Schwaller P (2005b) Mechanical and morphological properties of cellulose fibril reinforced nanocomposites. Adv Eng Mater 7:1156–1161CrossRefGoogle Scholar
  277. Zuluaga R, Putaux JL, Restrepo A, Mondragón I, Ganan P (2007) Cellulose microfibrils from banana farming residues: isolation and characterization. Cellulose 14:585–592CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Risø National Laboratory for Sustainable Energy, Technical University of Denmark (DTU)RoskildeDenmark

Personalised recommendations