, Volume 17, Issue 3, pp 595–606 | Cite as

Cellulose nanofibers from white and naturally colored cotton fibers

  • Eliangela de Morais Teixeira
  • Ana Carolina Corrêa
  • Alexandra Manzoli
  • Fabio de Lima Leite
  • Cauê Ribeiro de Oliveira
  • Luiz Henrique Capparelli Mattoso


Suspensions of white and colored nanofibers were obtained by the acid hydrolysis of white and naturally colored cotton fibers. Possible differences among them in morphology and other characteristics were investigated. The original fibers were subjected to chemical analysis (cellulose, lignin and hemicellulose content), X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM). The nanofibers were analyzed with respect to yield, elemental composition (to assess the presence of sulfur), zeta potential, morphology (by scanning transmission electron microscopy (STEM)) and atomic force microscopy (AFM), crystallinity (XRD) and thermal stability by thermogravimetric analysis in air under dynamic and isothermal temperature conditions. Morphological study of several cotton nanofibers showed a length of 85–225 nm and diameter of 6–18 nm. The micrographs also indicated that there were no significant morphological differences among the nanostructures from different cotton fibers. The main differences found were the slightly higher yield, sulfonation effectiveness and thermal stability under dynamic temperature conditions of the white nanofiber. On the other hand, in isothermal conditions at 180 °C, the colored nanofibers showed a better thermal stability than the white.


Naturally colored cotton fibers Colored cellulose nanofibers AFM STEM 



White cellulose


Brown cellulose


Green cellulose


Ruby cellulose


White nanocellulose


Brown nanocellulose


Green nanocellulose


Ruby nanocellulsoe



The authors gratefully acknowledge the supply of cotton fiber samples by Dr. Odilon R. R. F. Silva and Dr. Luiz P. de Carvalho (Embrapa Algodão, Brazil) and financial support provided by FAPESP (Process No. 07/50863-4), FINEP, CNPq and EMBRAPA.


  1. Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—Wheat straw and soy hulls. Bioresour Technol 99:1664–1671CrossRefGoogle Scholar
  2. Allen MJ, Hud NV, Balooch M, Tench RJ, Siekhaus WJ, Balhorn R (1992) Tip-radius-induced artifacts in AFM images of protamine-complexed DNA fibers. Ultramicroscopy 42:1095–1100CrossRefGoogle Scholar
  3. Anglès MN, Dufresne A (2000) Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules 33:8344–8353CrossRefGoogle Scholar
  4. Anglès MN, Dufresne A (2001) Plasticized starch/tunicin whiskers nanocomposites materials. 2. Mechanical behavior. Macromolecules 34:2921–2931CrossRefGoogle Scholar
  5. Bhatnagar A, Sain M (2005) Processing of cellulose nanofibers-reinforced composites. J Reinf Plas Compos 24:1259–1268CrossRefGoogle Scholar
  6. Buschle-Diller G, Zeronian SH (1992) Enhancing the reactivity and strength of cotton fibers. J Appl Polym Sci 45:967–979CrossRefGoogle Scholar
  7. Carvalho LP, Dos Santos JW (2003) Respostas correlacionadas do algodoeiro com a seleção para a coloração da fibra. Pesq Agropec Bras 38:79–83Google Scholar
  8. Chen Y, Sun L, Cui X, Calamari Jr TA, Kimmel LB, Parikh DV (2004) Naturally colored cotton for geocomposites. In: Processing of Beltwide Cotton Conference, p 2750Google Scholar
  9. Cherian BM, Pothan LA, Nguyen-Chung T, Mennig G, Kottaisamy M, Thomas S (2008) A novel method for the synthesis of cellulose nanofibril whiskers from banana fibers and characterization. J Agric Food Chem 56:5617–5627CrossRefGoogle Scholar
  10. De Rodriguez NLG, Thielemans W, Dufresne A (2006) Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13:261–270CrossRefGoogle Scholar
  11. Dong XM, Revol J-F, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystal of cellulose. Cellulose 5:19–32CrossRefGoogle Scholar
  12. Dufresne A (2006) Comparing the mechanical properties of high performances polymer nanocomposites from biological sources. J Nanosci Nanotechnol 6:322–330Google Scholar
  13. Dutt Y, Wang XD, Zhu YG, Li YY (2004) Breeding for high yield and fibre quality in coloured cotton. Plant Breed 123:141–151CrossRefGoogle Scholar
  14. Garcia VJ, Martinez L, Briceno-Valero JM, Schilling CH (1998) Dimensional Metrology of nanometric spherical particles using AFM: II, application of model-tapping mode. Probe Microsc 1:117–125Google Scholar
  15. Gardner DJ, Oporto GS, Mills R, Samir MASA (2008) Adhesion and surface issues in cellulose and nanocellulose. J Adhesion Sci Technol 22:545–567CrossRefGoogle Scholar
  16. Hua S, Wang X, Yuan S, Shao M, Zhao X, Zhu S, Jiang L (2007) Characterization of pigmentation and cellulose synthesis in colored cotton fibers. Crop Sci 47:1–7CrossRefGoogle Scholar
  17. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:2–37CrossRefGoogle Scholar
  18. Kvien I, Tanem BS, Oksman K (2005) Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. Biomacromolecules 6:3160–3163CrossRefGoogle Scholar
  19. Lima MMS, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25:771–787CrossRefGoogle Scholar
  20. Medeiros E, Mattoso LHC, Bernades-Filho R, Wood WJO (2008) Self-assembled films of cellulose nanofibrils and poly (o-ethoxyaniline). Colloid Polym Sci 286:1265–1272CrossRefGoogle Scholar
  21. Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159CrossRefGoogle Scholar
  22. Murthy MSS (2001) Never say dye: the story of coloured cotton. Resonance 6:29–35CrossRefGoogle Scholar
  23. Nakagaito AN, Iwamoto S, Yano H (2005) Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Appl Phys A Mat Mater Sci Process 80:93–97CrossRefGoogle Scholar
  24. Orts WJ, Shey J, Iman SH, Glenn GM, Guttman ME, Revol J-F (2005) Application of cellulose microfibrils in polymer nanocomposites. J Polym Environ 13:301–306CrossRefGoogle Scholar
  25. Pääkko M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure. Biomacromolecules 8:1934–1941CrossRefGoogle Scholar
  26. Pu YQ, Zhang JG, Elder T, Deng Y, Gatenholm P, Ragauskas AJ (2007) Investigation into nanocellulosics versus acacia reinforced acrylic films. Compos Part B-Eng 38:360–366CrossRefGoogle Scholar
  27. Rocha MS, Carvalho JMFC, Mata MERMC, Lopes KP (2008) Indução de superbrotamento e regeneração de plantas in vitro, nas cultivares de algodão colorido. R Bras Eng Agric Ambiental 12:503–506Google Scholar
  28. Rodgers J, Thibodeaux D, Cui X, Martin V, Watson M, Knowlton J (2008) Instrumental and operational impacts on spectrophotometer color measurements. J Cotton Sci 12:287–297Google Scholar
  29. Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671–1677CrossRefGoogle Scholar
  30. Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field source. Biomacromolecules 6:612–626CrossRefGoogle Scholar
  31. Thundat T, Zheng X-Y, Sharp SI, Allison DP, Warmack BJ, Joy DC, Ferrell TL (1992) Calibration of atomic force microscope tips using biomolecules. Scanning Microsc 6:903–910Google Scholar
  32. Wang Y, Cao X, Zhang L (2006) Effects of cellulose whiskers on properties of soy protein thermoplastics. Macromol Biosci 6:524–531CrossRefGoogle Scholar
  33. Wang N, Ding E, Cheng R (2007a) Thermal degradation behavior of spherical cellulose nanocrystals with sulfate groups. Polymer 48:3486–3493CrossRefGoogle Scholar
  34. Wang B, Sain M, Oksman K (2007b) Study of structural morphology of hemp fiber from the micro to the nanoscale. Appl Compos Mater 14:89–103CrossRefGoogle Scholar
  35. Xiao YH, Zhang Z-S, Yin M-H, Luo M, Li X-B, Hou L, Pei Y (2007) Cotton flavonoid structural genes related to the pigmentation in brown fibers. Biochem Biophys Res Commun 358:73–78CrossRefGoogle Scholar
  36. Zhang JG, Elder TJ, Pu YQ, Ragauskas AJ (2007) Facile synthesis of spherical cellulose nanoparticles. Carbohydr Polym 69:607–611CrossRefGoogle Scholar
  37. Zhang J, Jiang N, Dang Z, Elder TJ, Ragauskas AJ (2008) Oxidation and sulfonation of cellulosic. Cellulose 15:489–496CrossRefGoogle Scholar
  38. Zhu S-E, Gao P, Sun J-S, Wang H-H, Luo X-M, Jiao M-Y, Wang Z-Y, Xia G-X (2006) Genetic transformation of green-colored cotton. In vitro Cell Dev Biol Plant 42:439–444CrossRefGoogle Scholar
  39. Zuluaga R, Putaux JL, Restrepo A, Mondragon I, Gañán P (2007) Cellulose microfibrils from banana farming residues: isolation and characterization. Cellulose 14:585–592CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Eliangela de Morais Teixeira
    • 1
  • Ana Carolina Corrêa
    • 1
    • 2
  • Alexandra Manzoli
    • 1
  • Fabio de Lima Leite
    • 1
    • 3
  • Cauê Ribeiro de Oliveira
    • 1
  • Luiz Henrique Capparelli Mattoso
    • 1
  1. 1.National Nanotechnology Laboratory for Agribusiness (LNNA), Embrapa Agricultural InstrumentationSão CarlosBrazil
  2. 2.Federal University of Sao Carlos (UFSCar)Sao CarlosBrazil
  3. 3.Federal University of Sao Carlos (UFSCar)SorocabaBrazil

Personalised recommendations