Cellulose

, Volume 17, Issue 2, pp 417–426 | Cite as

Chemical and physical analysis of cotton fabrics plasma-treated with a low pressure DC glow discharge

  • S. Inbakumar
  • R. Morent
  • N. De Geyter
  • T. Desmet
  • A. Anukaliani
  • P. Dubruel
  • C. Leys
Article

Abstract

This paper focuses on the modification of cotton fabrics using a low pressure DC glow discharge obtained in air. The influence of different operating parameters such as treatment time, discharge power and operating pressure on the chemical and physical properties of the cotton fabrics is studied in detail. Surface analysis and characterization of the plasma-treated cotton fabrics is performed using vertical wicking experiments, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and weight loss measurements. The cotton fabrics show a significant increase in wicking behaviour; an effect which increases with increasing treatment time, increasing discharge power and increasing pressure. Results also show that low pressure DC glow treatment leads to surface erosion of the cellulose fibres, accompanied by an incorporation of oxygen-containing groups (C–O, C=O, O–C–O and O–C=O) on the cotton fibres. The DC glow treatment has thus the potential to influence not only the chemical but also the physical properties of cotton fabrics and this without the use of water or chemicals.

Keywords

Glow discharge Cotton Wicking X-ray photoelectron spectroscopy Process parameters 

References

  1. Briggs D (1990) Applications of XPS in polymer technology. In: Briggs D, Seah MP (eds) Practical surface analysis, volume 1: Auger and X-ray photoelectron spectroscopy, 2nd edn. Wiley, Chichester, pp 437–484Google Scholar
  2. Caiazzo F, Canonico P, Nigro R, Tagliaferri V (1996) Electrode discharge for plasma surface-treatment of polymeric materials. J Mater Process Technol 58:96–99CrossRefGoogle Scholar
  3. Chen X, Yao L, Xue J, Zhao D, Lan Y, Qian X, Wang CX, Qiu Y (2008) Plasma penetration depth and mechanical properties of atmospheric plasma-treated 3D aramid woven composites. Appl Surf Sci 255:2864–2868CrossRefGoogle Scholar
  4. Chung C, Lee M, Choe EK (2004) Characterization of cotton fabric scouring by Ft-IR ATR spectroscopy. Carbohydr Polym 58:417–420CrossRefGoogle Scholar
  5. De Geyter N, Morent R, Leys C (2006) Surface modification of a polyester non-woven with a dielectric barrier discharge at medium pressure. Surf Coat Technol 201:2460–2466CrossRefGoogle Scholar
  6. Dumitrascu N, Borcia C (2006) Adhesion properties of polyamide-6 fibres treated by dielectric barrier discharge. Surf Coat Technol 201:1117–1123CrossRefGoogle Scholar
  7. Ferrero F (2003) Wettability measurements on plasma treated synthetic fabrics by capillary rise method. Polym Test 22:571–578CrossRefGoogle Scholar
  8. Harnett PR, Mehta PN (1984) A survey and comparison of laboratory test methods for measuring wicking. Text Res J 54:471–478CrossRefGoogle Scholar
  9. Hodak SK, Supasai T, Paosawatyanyong B, Kamlangkla K, Pavarajarn V (2008) Enhancement of the hydrophobicity of silk fabrics by SF6 plasma. Appl Surf Sci 254:4744–4749CrossRefGoogle Scholar
  10. Inagaki N, Narushim K, Tuchida N, Miyazaki K (2004) Surface characterization of plasma-modified poly(ethylene terephthalate) film surfaces. J Appl Polym Sci B 42:3727–3740CrossRefGoogle Scholar
  11. Jocic D, Vilchez S, Topalovic T, Molina R, Navarro A, Jovancic P, Julia MR, Erra P (2005) Effect of low-temperature plasma and chitosan treatment on wool dyeing with acid red 27. J Appl Polym Sci 97:2204–2214CrossRefGoogle Scholar
  12. Johansson K (2007) Plasma modification of natural cellulosic fibres. In: Shishoo R (ed) Plasma technologies for textiles. Woodhead Publishing Limited, CRC Press LLC, Cambridge, pp 247–281Google Scholar
  13. Karahan HA, Özdogan E (2008) Improvements of surface functionality of cotton fibres by atmospheric plasma treatment. Fibres Polym 9:21–26CrossRefGoogle Scholar
  14. Keil M, Rastomjee CS, Rajagopal A, Sotobayashi H, Bradshaw AM, Lamont CLA, Gador D, Buchberger C, Fink R, Umbach E (1998) Argon plasma-induced modifications at the surface of polycarbonate thin films. Appl Surf Sci 125:273–286CrossRefGoogle Scholar
  15. Leroux F, Campagne C, Perwuelz A, Gengembre L (2008) Fluorocarbon nano-coating of polyester fabrics by atmospheric air plasma with aerosol. Appl Surf Sci 254:3902–3908CrossRefGoogle Scholar
  16. Liston EM (1989) Plasma treatment for improved bonding—a review. J Adh 30:199–218CrossRefGoogle Scholar
  17. Liston EM, Martinu L, Wertheimer MR (1993) Plasma surface modification of polymers for improved adhesion—a critical review. J Adhes Sci Technol 7:1091–1127CrossRefGoogle Scholar
  18. Mitchell R, Carr CM, Parfitt M, Vickerman JC, Jones C (2005) Surface chemical analysis of raw cotton fibres and associated materials. Cellulose 12:629–639CrossRefGoogle Scholar
  19. Morent R, De Geyter N, Verschuren J, De Clerck K, Kiekens P, Leys C (2008) Non-thermal plasma treatment of textiles. Surf Coat Technol 202:3427–3449CrossRefGoogle Scholar
  20. Pandiyaraj KN, Selvarajan V (2008) Non-thermal plasma treatment for hydrophilicity improvement of grey cotton fabrics. J Mater Process Technol 199:130–139CrossRefGoogle Scholar
  21. Poll HU, Schladitz U, Schreiter S (2001) Penetration of plasma effects into textile structures. Surf Coat Technol 142:489–493CrossRefGoogle Scholar
  22. Ren CS, Wang DZ, Wang YN (2008) Improvement of the graft and dyeability of linen by DBD treatment in ambient air. J Mater Process Technol 206:216–220CrossRefGoogle Scholar
  23. Samanta KK, Jassal M, Agrawal AK (2009) Improvement in water and oil absorbency of textile substrate by atmospheric pressure cold plasma treatment. Surf Coat Technol 203:1336–1342CrossRefGoogle Scholar
  24. Shi MK, Clouet F (1992) Study of the interactions of model polymer surface with cold plasmas. II. degradation rate versus pressure and gas flow rate. J Appl Polym Sci 46:2063–2074CrossRefGoogle Scholar
  25. Sun D, Stylios GK (2004) Effect of low temperature plasma treatment on the scouring and dyeing of natural fabrics. Text Res J 74:751–756CrossRefGoogle Scholar
  26. Temmerman E, Akishev Y, Trushkin N, Leys C, Verschuren J (2005) Surface modification with a remote atmospheric pressure plasma: DC glow discharge and surface streamer regime. J Phys D Appl Phys 38:505–509CrossRefGoogle Scholar
  27. Topalovic T, Nierstrasz VA, Bautista L, Jocic D, Navarro A, Warmoeskerken MMCG (2007) XPS and contact angle study of cotton surface oxidation by catalytic bleaching. Colloids Surf A 296:76–85CrossRefGoogle Scholar
  28. Toufik M, Mas A, Shkinev V, Nechaev A, Elharfi A, Schue F (2002) Improvement of performances of PET track membranes by plasma treatment. Eur Polym J 38:203–209CrossRefGoogle Scholar
  29. Verschuren J, Kiekens P, Leys C (2007) Textile-specific properties that influence plasma treatment, effect creation and effect characterization. Text Res J 77:727–733CrossRefGoogle Scholar
  30. Vesel A, Junkar I, Cvelbar U, Kovac J, Mozetic M (2008) Surface modification of polyester by oxygen- and nitrogen-plasma treatment. Surf Interface Anal 40:1444–1453CrossRefGoogle Scholar
  31. Ward TL, Benerito RR (1982) Modification of cotton by radiofrequency plasma of ammonia. Text Res J 52:256–262CrossRefGoogle Scholar
  32. Wong KK, Tao XM, Yuen WM, Yeung KW (2001) Wicking properties of linen treated with low temperature plasma. Textile Res J 71:49–56Google Scholar
  33. Yip J, Chan K, Sin KM, Lau KS (2002) Low temperature plasma-treated nylon fabrics. J Mater Process Technol 123:5–12CrossRefGoogle Scholar
  34. Zhang CS, Chen P, Liu D, Wang BC, Li W, Kang XT (2009) Aging behavior of PBO fibres and PBO-fibre-reinforced PPESK composite after oxygen plasma treatment. Surf Interface Anal 41:187–192CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • S. Inbakumar
    • 1
  • R. Morent
    • 2
  • N. De Geyter
    • 2
  • T. Desmet
    • 3
  • A. Anukaliani
    • 1
  • P. Dubruel
    • 3
  • C. Leys
    • 2
  1. 1.Department of PhysicsKongunadu Arts and Science CollegeCoimbatoreIndia
  2. 2.Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of EngineeringGhent UniversityGhentBelgium
  3. 3.Polymer Chemistry and Biomaterials Research Group, Department of Organic Chemistry, Faculty of SciencesGhent UniversityGhentBelgium

Personalised recommendations