, Volume 16, Issue 6, pp 1147–1157 | Cite as

Effect of cationization on adsorption of silver nanoparticles on cotton surfaces and its antibacterial activity

  • Mohammad Shateri Khalil-Abad
  • Mohammad Esmail Yazdanshenas
  • Mohammad Reza NateghiEmail author


Cotton was cationized by exhaustion method using 3-chloro-2-hydroxypropyl trimethyl ammonium chloride (CHPTAC) as a cation-generating agent. Adsorption of silver nanoparticles on normal and cationized cotton was studied by exhaustion method at temperatures of 80°C and 100°C. Two exhaustion baths were used, containing nanosilver colloidal solutions stabilized by two different stabilizers and various concentrations of silver nanoparticles. Fourier-transform infrared (FT-IR) spectra of normal and cationized samples confirmed the existence of quaternary ammonium groups on cationized cellulose fibers. X-ray diffraction (XRD) patterns showed that crystallinity of the modified cellulose fibers was decreased. Scanning electron microscope (SEM) images revealed that the surface of the modified cotton was rougher than that of normal cotton. In addition, SEM images showed the presence of silver nanoparticles on the surface of treated fabric samples. The amount of silver particles adsorbed on the fabric samples was determined using inductively coupled plasma-optical emission spectrometer. Antibacterial tests were performed against Escherichia coli bacteria as an indication of antibacterial effect of samples. Cationized cotton samples adsorbed more silver nanoparticles and then had greater ability to inhibit bacteria.


Antibacterial Cationization Cotton Exhaustion Modification Silver nanoparticles 


  1. Balu B, Breedveld V, Hess DW (2008) Fabrication of “roll-off” and “sticky” superhydrophobic cellulose surfaces via plasma processing. Langmuir 24:4785–4790. doi: CrossRefGoogle Scholar
  2. Chen W, Zhao S, Wang X (2004) Improving the color yield of ink-jet printing on cationized cotton. Text Res J 74:68–71. doi: CrossRefGoogle Scholar
  3. Cunha AG, Freire CSR, Silvestre AJD, Pascoal Neto C, Gandini A, Orblin E, Fardim P (2007) Characterization and evaluation of the hydrolytic stability of trifluoroacetylated cellulose fibers. J Colloid Interface Sci 316:360–366. doi: CrossRefGoogle Scholar
  4. Dubas ST, Kumlangdudsana P, Potiyaraj P (2006) Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloid Surf A 289:105–109. doi: CrossRefGoogle Scholar
  5. Fang K, Wang C, Zhang X, Xu Y (2005) Dyeing of cationized cotton using nanoscale pigment dispersions. Color Technol 121:325–328. doi: CrossRefGoogle Scholar
  6. Ghule K, Ghule AV, Chen BJ, Ling YC (2006) Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study. Green Chem 8:1034–1041. doi: CrossRefGoogle Scholar
  7. Gordon S, Hsieh YL (2007) Cotton: science and technology. Woodhead, CambridgeGoogle Scholar
  8. Hashem MM (2006) Development of a one-stage process for pretreatment and cationisation of cotton fabric. Color Technol 122:135–144. doi: CrossRefGoogle Scholar
  9. Hashem M, Hauser P, Smith B (2003) Ammonium chloride reaction efficiency for cellulose cationization using 3-chloro-2- hydroxypropyl trimethyl ammonium chloride. Text Res J 73(11):1017–1023. doi: CrossRefGoogle Scholar
  10. Hoefnagels HF, Wu D, With G, Ming W (2007) Biomimetic superhydrophobic and highly oleophobic cotton textiles. Langmuir 23:13158–13163. doi: CrossRefGoogle Scholar
  11. Hyde K, Dong H, Hinestroza JP (2007) Effect of surface cationization on the conformal deposition of polyelectrolytes over cotton fibers. Cellulose 14:615–623. doi: CrossRefGoogle Scholar
  12. Jeong SH, Yeo SY, Yi SC (2005) The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers. J Mater Sci 40:5407–5411. doi: CrossRefGoogle Scholar
  13. Jones AG (2002) Crystallization process systems. Butterworth-Heinemann, LondonCrossRefGoogle Scholar
  14. Kanik M, Hauser PJ (2004) Printing cationized cotton with direct dyes. Text Res J 74(1):43–50. doi: CrossRefGoogle Scholar
  15. Kantouch A, Kantouch F, El-Sayed H (2006) Surface modification of wool fabric for printing with acid and reactive dyes. Color Technol 122:213–216. doi: CrossRefGoogle Scholar
  16. Karahan HA, Ozdogan E, Karahan A, Ayhan H, Seventekin N (2008) Effects of atmospheric plasma treatment on the dyeability of cotton fabrics by acid dyes. Color Technol 124:106–110. doi: CrossRefGoogle Scholar
  17. Kim YH, Sun G (2002) Functional finishing of acrylic and Cationic dyeable fabrics: intermolecular interactions. Text Res J 72(12):1052–1056. doi: CrossRefGoogle Scholar
  18. Kumar R, Munstedt H (2005) Silver ion release from antimicrobial polyamide/silver composites. Biomaterials 26:2081–2088. doi: CrossRefGoogle Scholar
  19. Lee CJ, Karim MR, Lee MS (2007) Synthesis and characterization of silver/thiophene nanocomposites by UV-irradiation method. Mater Lett 61:2675–2678. doi: CrossRefGoogle Scholar
  20. Liu ZT, Yang Y, Zhang L, Liu ZW, Xiong H (2007) Study on the cationic modification and dyeing of ramie fiber. Cellulose 14:337–345. doi: CrossRefGoogle Scholar
  21. Montazer M, Malek RMA, Rahimi A (2007) Salt free reactive dyeing of cationized cotton. Fiber Polym 8(6):608–612. doi: CrossRefGoogle Scholar
  22. Mughal MJ, Naeem M, Aleem A, Saeed R, Ahmed K (2007) Effect of cationising agent on the conventional reactive dyeing of cotton. Color Technol 124:62–65. doi: CrossRefGoogle Scholar
  23. Radosta S, Vorwerg W, Ebert A, Begli AH, Grülc D, Wastyn M (2004) Properties of low-substituted cationic starch derivatives prepared by different derivatisation processes. Starch/Stärke 56:277–287CrossRefGoogle Scholar
  24. Rong L, Feng G (2006) Dyeing properties of PECH-amine cationized cotton with acid dyes. J Appl Polym Sci 100:3302–3306. doi: CrossRefGoogle Scholar
  25. Sambhy V, MacBride MM, Peterson BR, Sen A (2006) Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. J Am Chem Soc 128:9798–9808. doi: CrossRefGoogle Scholar
  26. Shahverdi AR, Fakhimi A, Shaverdi HR, Minaian S (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine 3:168–171CrossRefGoogle Scholar
  27. Sharif S, Ahmad S, Izhar-ul-Haq MM (2007) Role of quaternary ammonium salts in improving the fastness properties of anionic dyes on cellulose fibres. Color Technol 123:8–17. doi: CrossRefGoogle Scholar
  28. Sharif S, Ahmad S, Siddiqui WA (2008) Effects of cationic fixing agents on the direct dyeing properties of cotton fabrics. Color Technol 124:180–185. doi: CrossRefGoogle Scholar
  29. Shervani Z, Ikushima Y, Sato M, Kawanami H, Hakuta Y, Yokoyama T, Nagase T, Kuneida H, Aramaki K (2008) Morphology and size-controlled synthesis of silver nanoparticles in aqueous surfactant polymer solutions. Colloid Polym Sci 286:403–410. doi: CrossRefGoogle Scholar
  30. Sun Y, Lin L, Pang C, Deng H, Peng H, Li L, He B, Liu S (2007) Hydrolysis of cotton fiber cellulose in formic acid. Energy Fuels 21:2386–2389. doi: CrossRefGoogle Scholar
  31. Toth J (2001) Adsorption: theory, modeling, and analysis. Marcel Dekker, New YorkGoogle Scholar
  32. Vankar PS, Shanker R (2008) Ecofriendly ultrasonic natural dyeing of cotton fabric with enzyme pretreatments. Desalination 230:62–69. doi: CrossRefGoogle Scholar
  33. Wang H, Wang J, Hong J, Wei Q, Gao W, Zhu Z (2007) Preparation and characterization of silver nanocomposite textile. J Coat Technol Res 4(1):101–106. doi: CrossRefGoogle Scholar
  34. Weibin X, Jinxin H, Shuilin C, Guoqiang C, Taozhi P (2007) Modification of silk with aminated polyepichlorohydrin to improve dyeability with reactive dyes. Color Technol 123:74–79. doi: CrossRefGoogle Scholar
  35. Wu M, Kuga S (2006) Cationization of cellulose fabrics by polyallylamine binding. J Appl Polym Sci 100:1668–1672. doi: CrossRefGoogle Scholar
  36. Xie K, Hou A, Sun Y (2007) Chemical and morphological structures of modified novel cellulose with triazine derivatives containing cationic and anionic groups. Carbohydr Polym 70:285–290. doi: CrossRefGoogle Scholar
  37. Xie K, Hou A, Wang X (2008) Dyeing and diffusion properties of modified novel cellulose with triazine derivatives containing cationic and anionic groups. Carbohydr Polym 72:646–651. doi: CrossRefGoogle Scholar
  38. Yin C, Li J, Xu Q, Peng Q, Liu Y, Shen X (2007) Chemical modification of cotton cellulose in supercritical carbon dioxide: synthesis and characterization of cellulose carbamate. Carbohydr Polym 67:147–154. doi: CrossRefGoogle Scholar
  39. Yuranova T, Rincon AG, Bozzi A, Parra S, Pulgarin C, Albers P, Kiwi J (2003) Antibacterial textiles prepared by RF-plasma and vacuum-UV mediated deposition of silver. J Photochem Photobiol A 161:27–34. doi: CrossRefGoogle Scholar
  40. Zhang S, Ma W, Ju B, Dang N, Zhang M, Wu S, Yang J (2005) Continuous dyeing of cationised cotton with reactive dyes. Color Technol 121:183–186. doi: CrossRefGoogle Scholar
  41. Zhang M, Ju BZ, Zhang SF, Ma W, Yang JZ (2007) Synthesis of cationic hydrolyzed starch with high DS by dry process and use in salt-free dyeing. Carbohydr Polym 69:123–129. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Mohammad Shateri Khalil-Abad
    • 1
  • Mohammad Esmail Yazdanshenas
    • 1
  • Mohammad Reza Nateghi
    • 2
    Email author
  1. 1.Textile DepartmentIslamic Azad UniversityYazdIran
  2. 2.Chemistry DepartmentIslamic Azad UniversityYazdIran

Personalised recommendations