, Volume 16, Issue 6, pp 1109–1121 | Cite as

Adsorption of cationized barley husk xylan on kraft pulp fibres: influence of degree of cationization on adsorption characteristics

  • Tobias KöhnkeEmail author
  • Harald Brelid
  • Gunnar Westman


A water-soluble (glucurono)arabinoxylan (GAX) was isolated from barley husk using chlorite delignification followed by alkaline extraction and enzymatic purification of the extract. The isolated xylan was shown to adsorb on bleached softwood kraft fibres, but the degree of adsorption was rather low under the applied conditions. This can be explained by the inhibited adsorption of GAX molecules with a relatively high degree of arabinofuranosyl substitution, as indicated by iodine complexation and neutral carbohydrate analysis of the non-adsorbing xylans. In order to increase the driving force for adsorption of the more highly substituted GAX, the xylan was cationized through a reaction in an aqueous alkaline medium with 2,3-epoxypropyltrimethylammonium chloride (EPTMAC). The chemical modification of xylan was confirmed by using 1H-13C HSQC (Heteronuclear Single Quantum Coherence) NMR, and was quantified by using elemental analysis. The GAX cationization, which introduced cationic charge densities ranging from 110 to 740 μeq/g, was shown to increase the rate and magnitude of adsorption extensively, due to the induced electrostatic interaction between the anionic fibres and the cationic xylan. Similar to non-modified xylan, cationic xylan possessed a non-electrostatic cellulose surface affinity, as shown by adsorption at high ionic-strength and on esterified (carboxyl-free) pulp fibres.


(Glucurono)arabinoxylan Barley husk Cationization 2-Hydroxypropyl-trimethylammonium xylan Adsorption Kraft pulp 



The authors would like to thank everyone involved in Avancell, Centre for Fibre Engineering. The authors also gratefully acknowledge Södra Cell and the Knowledge Foundation through its graduate school, YPK, for financial support. Dr. Göran Karlsson and Dr. Cecilia Persson at “The Swedish NMR Centre”, Göteborg, Sweden, are acknowledged for obtaining the NMR spectra.


  1. Antal M, Ebringerová A, Šimkovic I (1984) New aspects in cationization of lignocellulose materials. II. Distribution of functional groups in lignin, hemicellulose, and cellulose components. J Appl Polym Sci 29:643–650CrossRefGoogle Scholar
  2. Antal M, Ebringerová A, Micko MM (1991) Kationisierte Hemicellulosen aus Espenholzmehl und ihr Einsatz in der Papierherstellung. Das Papier 45(5):232–235Google Scholar
  3. Antal M, Ebringerová A, Hromádková Z (1997) Struktur und papiertechnische Eigenschaften von Aminoalkylxylanen. Das Papier 51(5):223–226Google Scholar
  4. Aspinall GO, Ferrier RJ (1957) The constitution of barley husk hemicellulose. J Chem Soc 840:4188–4194CrossRefGoogle Scholar
  5. Ebringerová A, Hromádková Z (1996) Zur Substituentenverteilung in kationischen Xylanderivaten. Angew Makromol Chem 242:97–104CrossRefGoogle Scholar
  6. Ebringerová A, Hromádková Z, Kačuráková M, Antal M (1994) Quaternized xylans: synthesis and structural characterization. Carbohydr Polym 24:301–308CrossRefGoogle Scholar
  7. Ebringerová A, Hromáková Z, Heinze T (2005) Hemicellulose. In: Heinze T (ed) Polysaccharides I. Adv Polym Sci 186, pp 1–67Google Scholar
  8. Fleer GJ, Cohen Stuart MA, Scheutjens JMHM, Vincent B (1993) Polymer at interfaces. Chapman & Hall, London, pp 343–375Google Scholar
  9. Gaillard BDE, Thompson NS (1971) Interaction of polysaccharides with iodine. Part II. The behavior of xylans in different salt solutions. Carbohydr Res 18:137–146CrossRefGoogle Scholar
  10. Glasser WG, Kaar WE, Jain RK, Sealey JE (2000) Isolation options for non-cellulosic heteropolysaccharides (HetPS). Cellulose 7(3):299–317CrossRefGoogle Scholar
  11. Hansson J-Å, Hartler N (1969) Sorption of hemicelluloses on cellulose fibres. Part 1. Sorption of xylans. Svensk Papperstid 72(17):521–530Google Scholar
  12. Henriksson K, Teleman A, Suortti T, Reinikainen T, Jaskari J, Teleman O, Poutanen K (1995) Hydrolysis of barley (1 → 3), (1 → 4)-β-d-glucan by a cellobiohydrolase II preparation from Trichoderma reesei. Carbohydr Polym 56:109–119CrossRefGoogle Scholar
  13. Höije A, Gröndahl M, Tommeraas K, Gatenholm P (2005) Isolation and characterization of physicochemical and material properties of arabinoxylans from barley husks. Carbohydr Polym 61:266–275CrossRefGoogle Scholar
  14. Höije A, Sandström C, Roubroeks JP, Andersson R, Gohil S, Gatenholm P (2006) Evidence of the presence of 2-O-β-d-xylopyranosyl-α-l-arabinofuranose side chains in barley husk arabinoxylan. Carbohydr Res 341:2959–2966CrossRefGoogle Scholar
  15. Horvath AE, Lindström T, Laine J (2006) On the indirect titration of cellulosic fibers. Conditions for charge stoichiometry and comparison with ESCA. Langmuir 22(2):824–830CrossRefGoogle Scholar
  16. Horvath AT, Horvath AE, Lindström T, Wågberg L (2008) Adsorption of low charge density polyelectrolytes to a oppositely charged porous substrate. Langmuir 24:6585–6594CrossRefGoogle Scholar
  17. Kabel MS, van den Borne H, Vincken JP, Voragen AGJ, Schols HA (2007) Structural differences of xylans affect their interaction with cellulose. Carbohydr Polym 69(1):94–105CrossRefGoogle Scholar
  18. Katz S, Beatson RP, Scallan AM (1984) The determination of strong and weak acidic groups in sulfite pulps. Svensk Papperstid 87(6):R48–R53Google Scholar
  19. Köhnke T, Gatenholm P (2007) The effect of controlled glucuronoxylan adsorption on drying-induced strength loss of bleached softwood pulp. Nordic Pulp Paper Res J 22(4):508–515CrossRefGoogle Scholar
  20. Köhnke T, Pujolras C, Roubroeks JP, Gatenholm P (2008) The effect of barley husk arabinoxylan adsorption on the properties of cellulose fibres. Cellulose 15(4):537–546CrossRefGoogle Scholar
  21. Krawczyk H, Persson T, Andersson A, Jönsson A-S (2008) Isolation of hemicelluloses from barley husks. Food Bioprod Process 86:31–36CrossRefGoogle Scholar
  22. Laine C, Haakana S, Hortling B, Tamminen T (1999) Application of methylation analysis to samples derived from spruce kraft pulp. In: Proceedings from the 10th international symposium wood pulping chem (ISWPC), Japan, 7–10 June 1999, vol 1, pp 72–77Google Scholar
  23. Lindström T, Wågberg L, Larsson T (2005) On the nature of joint strength in paper—a review of dry and wet strength resins used in paper manufacturing. In: Proceedings of the 13th fundamental research symposium, vol 1. Cambridge, UK, pp 457–562Google Scholar
  24. McNeil M, Albersheim P, Taiz L, Jones RL (1975) The structure of plant cell walls. VII. Barley aleurone cells. Plant Physiol 55(1):64–68CrossRefGoogle Scholar
  25. Paananen A, Österberg M, Rutland M, Tammelin T, Saarinen T, Tappura K, Stenius P (2004) Interaction between cellulose and xylan: an atomic force microscope and quartz crystal microbalance study. In: Gatenholm P, Tenkanen M (eds) Hemicelluloses: science and technology. ACS Symp Ser 864, pp 269–290Google Scholar
  26. Pitkänen L, Tuomainen P, Virkki L, Aseyev V, Tenkanen M (2008) Structural comparison of arabinoxylans from two barley side-stream fractions. J Agric Food Chem 56:5069–5077CrossRefGoogle Scholar
  27. Ramirez F, Puls J, Zúñiga V, Saake B (2008) Sorption of corn cob and oat spelt arabinoxylan onto softwood kraft pulp. Holzforschung 62(3):329–337CrossRefGoogle Scholar
  28. Ren J-L, Peng F, Sun R-C, Kennedy JF (2009) Influence of hemicellulosic derivatives on the sulfate kraft pulp strength. Carbohydr Polym 75:338–342CrossRefGoogle Scholar
  29. Roos AA, Persson T, Krawczyk H, Zacchi G, Stålbrand H (2009) Extraction of water-soluble hemicelluloses from barley husks. Bioresour Technol 100:763–769CrossRefGoogle Scholar
  30. Sarkanen KV, Ludwig CH (1971) Lignins. Occurrence, formation, structure and reactions. Wiley-Interscience, New York, pp 193–194Google Scholar
  31. Schönberg C, Oksanen T, Suurnäkki A, Kettunen H, Buchert J (2001) The importance of xylan for the strength properties of spruce kraft pulp fibre. Holzforschung 55(6):639–644CrossRefGoogle Scholar
  32. Schwikal K, Heinze T, Ebringerová A, Petzold K (2006) Cationic xylan derivatives with high degree of functionalization. In: Fischer K, Heinze T (eds) Macromol Symp 232, pp 85–92Google Scholar
  33. Šimkovic I, Mlynár J, Alföldi J (1990) New aspects in cationization of lignocellulose materials. XI. Modification of bagasse with quarternary ammonium groups. Holzforschung 44(2):113–116CrossRefGoogle Scholar
  34. Sjöström E, Enström B (1966) A method for separate determination of sulpho and carboxyl groups in sulphite pulps. Svensk Papperstid 69(3):55–59Google Scholar
  35. Theander O, Westerlund EA (1986) Studies on dietary fiber. 3. Improved procedures for analysis of dietary fiber. J Agric Food Chem 34(2):330–336CrossRefGoogle Scholar
  36. Theander O, Åman P, Westerlund E, Andersson R, Pettersson D (1995) Total dietary fiber determined as neutral sugar residues, uronic acid residues, and Klason lignin (The Uppsala method): collaborative study. J AOAC Int 78(4):1030–1044PubMedGoogle Scholar
  37. Trogh I, Croes E, Courtin CM, Delcour JA (2005) Enzymic degradability of hull-less barley flour alkali-solubilized arabinoxylan fractions by endoxylanases. J Agric Food Chem 53:7243–7250CrossRefGoogle Scholar
  38. Van de Steeg HGM, Cohen Stuart MA, de Keizer A, Bijsterbosch BH (1992) Polyelectrolyte adsorption: a subtle balance of forces. Langmuir 8:2538–2546CrossRefGoogle Scholar
  39. Winter L, Wågberg L, Ödberg L, Lindström T (1986) Polyelectrolytes adsorbed on the surface of cellulosic materials. J Colloid Interface Sci 111(2):537–543CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Organic Chemistry, Department of Chemical and Biological EngineeringChalmers University of TechnologyGöteborgSweden
  2. 2.Forest Products and Chemical Engineering, Department of Chemical and Biological EngineeringChalmers University of TechnologyGöteborgSweden

Personalised recommendations