Advertisement

Cellulose

, Volume 16, Issue 6, pp 1047–1055 | Cite as

Mechanical and structural properties of native and alkali-treated bacterial cellulose produced by Gluconacetobacter xylinus strain ATCC 53524

  • Brigid A. McKenna
  • Deirdre Mikkelsen
  • J. Bernhard Wehr
  • Michael J. GidleyEmail author
  • Neal W. Menzies
Article

Abstract

Mechanical properties of hydrated bacterial cellulose have been tested as a function of fermentation time and following the alkali treatment required for sterilisation prior to biomedical applications. Bacterial cellulose behaves as a viscoelastic material, with brittle failure reached at approximately 20% strain and 1.5 MPa stress under uniaxial tension. Treatment with 0.1 M NaOH resulted in minimal effects on the mechanical properties of bacterial cellulose. Fermentation time had a large effect on both bacterial numbers and cellulose yield but only minor effects on mechanical properties, showing that the fermentation system is a robust method for producing cellulose with predictable materials properties. The failure zone in uniaxial tension was shown to be associated with large-scale fibre alignment, consistent with this being the major determinant of mechanical properties. Under uniaxial tension, elastic moduli and failure stresses are an order of magnitude lower than those obtained under biaxial tension, consistent with the fibre alignment mechanism which is not available under biaxial tension.

Keywords

Cellulose Gluconacetobacter xylinus Mechanical properties Scanning electron microscopy Tensile testing 

Notes

Acknowledgments

This research was funded through the Australian Research Council’s Discovery scheme (DP0665467 and DP058067). The authors would like to thank Dr. Darren Martin for use of the Instron 5543 instrument. James Riesz, Dr. Grant Edwards and Dr. Polly Burey are thanked for their helpful discussions and Dr. Peter Kopittke for statistical analysis.

References

  1. Astley OM, Chanliaud E, Donald AM, Gidley MJ (2001) Structure of Acetobacter cellulose composites in the hydrated state. Int J Biol Macromol 29:193–202. doi: https://doi.org/10.1016/S0141-8130(01)00167-2 CrossRefGoogle Scholar
  2. Astley OM, Chanliaud E, Donald AM, Gidley MJ (2003) Tensile deformation of bacterial cellulose composites. Int J Biol Macromol 32:28–35. doi: https://doi.org/10.1016/S0141-8130(03)00022-9 CrossRefGoogle Scholar
  3. Backdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27:2141–2149. doi: https://doi.org/10.1016/j.biomaterials.2005.10.026 CrossRefGoogle Scholar
  4. Cannon RE, Anderson SM (1991) Biogenesis of bacterial cellulose. Crit Rev Microbiol 17:435–447. doi: https://doi.org/10.3109/10408419109115207CrossRefGoogle Scholar
  5. Chanliaud E, Gidley MJ (1999) In vitro synthesis and properties of pectin/Acetobacter xylinus cellulose composites. Plant J 20:25–35. doi: https://doi.org/10.1046/j.1365-313X.1999.00571.x CrossRefGoogle Scholar
  6. Chanliaud E, Burrows KM, Jeronimidis G, Gidley MJ (2002) Mechanical properties of primary plant cell wall analogues. Planta 215:989–996. doi: https://doi.org/10.1007/S00425-002-0783-8 CrossRefGoogle Scholar
  7. Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12CrossRefGoogle Scholar
  8. Dammstrom S, Gatenholm P (2006) Preparation and properties of cellulose/xylan nanocomposites. In: Stokke DD, Groom LH (eds) Characterization of the cellulosic cell wall. Wiley-Blackwell, New Jersey, pp 53–64CrossRefGoogle Scholar
  9. GenStat (2003) GenStat for Windows. Release 7.2, 7th edn. VSN International Ltd, OxfordGoogle Scholar
  10. George J, Ramana K, Sabapathy S, Bawa A (2005a) Physico-mechanical properties of chemically treated bacterial (Acetobacter xylinum) cellulose membrane. World J Microbiol Biotechnol 21:1323–1327. doi: https://doi.org/10.1007/S11274-005-3574-0 CrossRefGoogle Scholar
  11. George J, Ramana KV, Sabapathy SN, Jagannath JH, Bawa AS (2005b) Characterisation of chemically treated bacterial (Acetobacter xylinus) biopolymer: some thermo-mechanical properties. Int J Biol Macromol 37:189–194. doi: https://doi.org/10.1016/j.ijbiomac.2005.10.007 CrossRefGoogle Scholar
  12. Hamad WY (1998) On the mechanisms of cumulative damage and fracture in native cellulose fibres. J Mater Sci Lett 17:433–436. doi: https://doi.org/10.1023/A:1006555722188 CrossRefGoogle Scholar
  13. Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58:345–352CrossRefGoogle Scholar
  14. Hsieh YC, Yano H, Nogi M, Eichhorn SJ (2008) An estimation of the Young’s modulus of bacterial cellulose filaments. Cellulose 15:507–513. doi: https://doi.org/10.1007/S10570-008-9206-8 CrossRefGoogle Scholar
  15. Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35:261–270. doi: https://doi.org/10.1023/A:1004775229149 CrossRefGoogle Scholar
  16. Ishikawa A, Okano T, Sugiyama J (1997) Fine structure and tensile properties of ramie fibres in the crystalline form of cellulose I, II, IIII and IVI. Polymer 38:463–468. doi: https://doi.org/S0032-3861(96)00516-2CrossRefGoogle Scholar
  17. Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stabil 59:101–106. doi: https://doi.org/10.1016/S0141-3910(97)00197-3 CrossRefGoogle Scholar
  18. Kersters K, Lisdiyanti P, Komagata K, Swings J (2006) The Family Acetobacteraceae: the Genera Acetobacter, Acidomonas, Asaia, Gluconacetobacter, Gluconobacter, and Kozakia. In The Prokaryotes. Springer, New York, pp 163–200Google Scholar
  19. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393. doi: https://doi.org/10.1002/anie.200460587 CrossRefGoogle Scholar
  20. Nakayama A, Kakugo A, Gong JP, Osada Y, Takai M, Erata T, Kawano S (2004) High mechanical strength double-network hydrogel with bacterial cellulose. Adv Funct Mater 14:1124–1128. doi: https://doi.org/10.1002/adfm.200305197 CrossRefGoogle Scholar
  21. Nishi Y, Uryu M, Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S (1990) The structure and mechanical properties of sheets prepared from bacterial cellulose 2. Improvement of the mechanical properties of sheets and their applicability to diaphragms of electroacoustic transducers. J Mater Sci 25:2997–3001. doi: https://doi.org/10.1007/BF00584917 CrossRefGoogle Scholar
  22. Nishino T, Takano K, Nakamae K (1995) Elastic modulus of the crystalline regions of cellulose polymorphs. J Polymer Sci B Polymer Phys 33:1647–1651. doi: 0887-6266/95/111647-05CrossRefGoogle Scholar
  23. Putra A, Kakugo A, Furukawa H, Gong JP, Osada Y, Uemura T, Yamamoto M (2008) Production of bacterial cellulose with well oriented fibril on PDMS substrate. Polym J 40:137–142. doi: https://doi.org/10.1295/polymj.PJ2007180 CrossRefGoogle Scholar
  24. Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55:35–58. doi: https://doi.org/0146-0749/91/010035-24PubMedPubMedCentralGoogle Scholar
  25. Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431. doi: https://doi.org/10.1016/j.biomaterials.2004.02.049 CrossRefGoogle Scholar
  26. Tokoh C, Takabe K, Sugiyama J, Fujita M (2002) Cellulose synthesized by Acetobacter xylinum in the presence of plant cell wall polysaccharides. Cellulose 9:65–74. doi: https://doi.org/10.1023/A:1015827121927 CrossRefGoogle Scholar
  27. Touzel JP, Chabbert B, Monties B, Debeire P, Cathala B (2003) Synthesis and characterization of dehydrogenation polymers in Gluconacetobacter xylinus cellulose and cellulose/pectin composite. J Agric Food Chem 51:981–986. doi: https://doi.org/10.1021/jf020200p CrossRefGoogle Scholar
  28. Vincent J (1990) Structural biomaterials. Princeton University Press, New JerseyGoogle Scholar
  29. Wharton DA (1991) Freeze substitution techniques for preparing nematodes for scanning electron microscopy. J Microsc (Oxf) 164:187–196CrossRefGoogle Scholar
  30. Whitney SEC, Brigham JE, Darke AH, Reid JSG, Gidley MJ (1995) In vitro assembly of cellulose/xyloglucan networks—ultrastructural and molecular aspects. Plant J 8:491–504. doi: https://doi.org/10.1046/j.1365-313X.1995.8040491.x CrossRefGoogle Scholar
  31. Yamada Y, Hoshino K, Ishikawa T (1997) Taxonomic studies of acetic acid bacteria and allied organisms.11. The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenus Gluconoacetobacter to the generic level. Biosci Biotechnol Biochem 61:1244–1251CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Brigid A. McKenna
    • 2
  • Deirdre Mikkelsen
    • 1
  • J. Bernhard Wehr
    • 2
  • Michael J. Gidley
    • 1
    Email author
  • Neal W. Menzies
    • 2
  1. 1.Centre for Nutrition and Food SciencesThe University of QueenslandBrisbaneAustralia
  2. 2.School of Land, Crop and Food SciencesThe University of QueenslandBrisbaneAustralia

Personalised recommendations