Cellulose

, 16:975 | Cite as

Cellulose structural arrangement in relation to spectral changes in tensile loading FTIR

Article

Abstract

In order to utilise wood and wood fibres in advanced materials, a better understanding of the mechanical material characteristics and the interactions among the components is necessary. For this purpose, FTIR was explored together with mechanical loading as a means of studying the molecular responses to the loading of spruce wood and cellulose paper material. A linear shift of absorption bands was detected as the loading was applied. In relation to the applied stress these shifts were higher under moist conditions than under dry ones but they were similar with regard to the strains applied. There were no shifts detected in bands related to lignin or the hemicelluloses. The results are interpreted as reflecting a parallel arrangement of the load bearing component, the cellulose ordered structure, and the moisture accessible regions in the cellulose microfibril structure. This therefore represents an equal strain loaded system.

Keywords

Cellulose Deformation Fourier transform infrared (FTIR) Moisture Structure Wood 

References

  1. Agarwal UP (1999) An overview of Raman spectroscopy as applied to lignocellulosic materials. In: Argyropoulos DS (ed) Advances in lignocellulosics characterization. Atlanta, GA, TAPPI Press, USA, pp 209–225Google Scholar
  2. Åkerholm M, Salmén L (2001) Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer 42(3):963–969. doi:10.1016/S0032-3861(00)00434-1 CrossRefGoogle Scholar
  3. Åkerholm M, Salmén L (2003) The oriented structure of lignin and its viscoelastic properties studied by static and dynamic FT-IR. Holzforsch 57(5):459–465. doi:10.1515/HF.2003.069 CrossRefGoogle Scholar
  4. Åkerholm M, Salmén L (2004) Softening of wood polymers induced by moisture studied by dynamic FT-IR spectroscopy. J Appl Polym Sci 94:2032–2040. doi:10.1002/app.21133 CrossRefGoogle Scholar
  5. Bergander A, Salmén L (2002) Cell wall properties and their effects on the mechanical properties of fibers. J Mater Sci 37(1):151–156. doi:10.1023/A:1013115925679 CrossRefGoogle Scholar
  6. Burgert I, Gierlinger N, Eder M (2008) The mechanical properties of juvinile and adult wood tracheids—an insight into nanostructural deformation. In: Entwistle K, Harris P (eds) The compromised wood workshop 2007. J Walker Univ, Canterbury, pp 177–184Google Scholar
  7. Cave ID (1968) The anisotropic elasticity of the plant cell wall. Wood Sci Technol 2:268–278. doi:10.1007/BF00350273 CrossRefGoogle Scholar
  8. Colthup NB, Daly LH, Wiberley SE (1990) Introduction to infrared and raman spectroscopy. Academic Press, LondonGoogle Scholar
  9. Eichhorn SJ, Sirichaisit J, Young R (2001) Deformation mechanisms in cellulose fibres, paper and wood. J Mater Sci 36(13):3129–3135. doi:10.1023/A:1017969916020 CrossRefGoogle Scholar
  10. Fengel D (1991) Möglichkeiten und Grenzen der FTIR-Spektrokopie bei der Charakterisierung von CelluloseTeil 2. Vergleich von verschiedenen Zellstoffen Papier 45(3):97–102Google Scholar
  11. Fengel D (1993) Influence of water on the OH valency range in deconvoluted FTIR spectra of cellulose. Holzforschung 47:103–108CrossRefGoogle Scholar
  12. Gierlinger N, Schwanninger M, Reinecke A, Burgert I (2006) Molecular changes during tensile deformation of single wood fibers followed by Raman microscopy. Biomacromolecules 7(7):2077–2081. doi:10.1021/bm060236g CrossRefGoogle Scholar
  13. Hinterstoisser B, Åkerholm M, Salmén L (2001) Effect of fiber orientation in dynamic FTIR study on native cellulose. Carbohydr Res 334:27–37. doi:10.1016/S0008-6215(01)00167-7 CrossRefGoogle Scholar
  14. Hinterstoisser B, Åkerholm M, Salmén L (2003) Load distribution in native cellulose. Biomacromolecules 4(5):1232–1237. doi:10.1021/bm030017k CrossRefGoogle Scholar
  15. Hofstetter K, Hinterstoisser B, Salmén L (2006) Moisture uptake in native cellulose—the roles of different hydrogen bonds: a dynamic FT-IR study using deuterium exchange. Cellulose 13(2):131–145. doi:10.1007/s10570-006-9055-2 CrossRefGoogle Scholar
  16. Ivanova NV, Korolenko EA, Korolik EV, Zbankov RG (1989) Mathematical processing of IR-spectra of cellulose. Zurnal Prikladnoj Spektroskopii 51:301–306Google Scholar
  17. Kersavage PC (1973) Moisture content effect on tensile properties of individual Douglas-Fir latewood tracheids. Wood Fiber 5(2):105–117Google Scholar
  18. Liang CY, Marchessault RH (1959a) Infrared spectra of crystalline polysaccharides I. Hydrogen bonds in native celluloses. J Polym Sci 37:385–395. doi:10.1002/pol.1959.1203713209 CrossRefGoogle Scholar
  19. Liang CY, Marchessault RH (1959b) Infrared spectra of crystalline polysaccharides. II. Native celluloses in the region from 640 to 1,700 cm−1. Journal of Polymer Science 39:269–278. doi:10.1002/pol.1959.1203913521 CrossRefGoogle Scholar
  20. Marechal Y, Chanzy H (2000) The hydrogen bond network in I.beta. cellulose as observed by infrared spectrometry. J Mol Struct 523:183–196. doi:10.1016/S0022-2860(99)00389-0 CrossRefGoogle Scholar
  21. Page DH, El-Hosseiny F (1983) The mechanical properties of single wood pulp fibres Part VI, Fibril angle and the shape of the stress-strain curve. J Pulp Pap Sci Trans Techn Sect 9(4):99–100Google Scholar
  22. Rowland SP, Roberts EJ (1972) The nature of accessible surfaces in the microstructure of cotton cellulose. J Polym Sci 10(Part A-1):2447–2461Google Scholar
  23. Salmén L (1990) On the interaction between moisture and wood fiber materials. In: Caulfield DF, Passaretti JD, Sobczynski SF (eds) Materials Interactions Relevant to the pulp, paper, & wood ind, vol 197. Mater Res Soc, Pittsburgh, pp 193–201Google Scholar
  24. Salmén L (2004) Micromechanical understanding of the cell-wall structure. C R Biol 327(9–10):873–880. doi:10.1016/j.crvi.2004.03.010 CrossRefGoogle Scholar
  25. Sturcová A, Eichhorn SJ, Jarvis MC (2006) Vibrational spectroscopy of biopolymers under mechanical stress: processing cellulose spectra using bandshift difference integrals. Biomacromolecules 7:2688–2691. doi:10.1021/bm060457m CrossRefGoogle Scholar
  26. Tashiro K, Kobayashi M (1991) Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer 32(8):1516–1526. doi:10.1016/0032-3861(91)90435-L CrossRefGoogle Scholar
  27. Tsuboi M (1957) Infrared spectrum and crystal structure of cellulose. J Polym Sci 37:159–171. doi:10.1002/pol.1957.1202510904 CrossRefGoogle Scholar
  28. Wickholm K, Larsson PT, Iversen T (1998) Assignment of non-crystalline forms in cellulose I by CP/MAS carbon 13 NMR spectroscopy. Carbohydr Res 312(3):123–129. doi:10.1016/S0008-6215(98)00236-5 CrossRefGoogle Scholar
  29. Wool RP (1981) Measurements of infrared frequency shifts in stressed polymers. J Pol Sci 19(3):449–457Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.INNVENTIA (former STFI-Packforsk)StockholmSweden

Personalised recommendations