Cellulose

, Volume 16, Issue 4, pp 711–722 | Cite as

The impact of cell wall acetylation on corn stover hydrolysis by cellulolytic and xylanolytic enzymes

  • Michael J. Selig
  • William S. Adney
  • Michael E. Himmel
  • Stephen R. Decker
Article

Abstract

Analysis of variously pretreated corn stover samples showed neutral to mildly acidic pretreatments were more effective at removing xylan from corn stover and more likely to maintain the acetyl to xylopyranosyl ratios present in untreated material than were alkaline treatments. Retention of acetyl groups in the residual solids resulted in greater resistance to hydrolysis by endoxylanase alone, although the synergistic combination of endoxylanase and acetyl xylan esterase enzymes permitted higher xylan conversions to be observed. Acetyl xylan esterase alone did little to improve hydrolysis by cellulolytic enzymes, although a direct relationship was observed between the enzymatic removal of acetyl groups and improvements in the enzymatic conversion of xylan present in substrates. In all cases, effective xylan conversions were found to significantly improve glucan conversions achievable by cellulolytic enzymes. Additionally, acetyl and xylan removal not only enhanced the respective initial rates of xylan and glucan conversion, but also the overall extents of conversion. This work emphasizes the necessity for xylanolytic enzymes during saccharification processes and specifically for the optimization of acetyl esterase and xylanase synergies when biomass processes include milder pretreatments, such as hot water or sulfite steam explosion.

Keywords

Lignocellulose Acetyl Pretreatment Cellulase Xylanase Acetyl xylan esterase 

Notes

Acknowledgments

This work was supported by the U.S. Department of Energy Office of the Biomass Program under contract No. DE-AC36-99GO10337 with the National Renewable Energy Laboratory (NREL).

References

  1. Adney W, Chou Y, Decker S (2003) Heterologous expression of Trichoderma reesei 1, 4-beta-d-glucan cellobiohydrolase (Cel 7A). In: Mansfield S et al (eds) Applications of enzymes to lignocellulosics. American Chemical Society, Washington, pp 403–437CrossRefGoogle Scholar
  2. Baker J, Mitchell D, Grohmann K (1991) Thermal unfolding of Trichoderma reesei CBH I. In: Leatham G, Himmel M et al (eds) Enzymes in biomass conversion. American Chemical Society, Washington, pp 313–330CrossRefGoogle Scholar
  3. Baker J, Adney W, Nieves R et al (1994) A new thermostable endoglucanase, Acidothermus cellulolyticus E1: synergism with Trichoderma reesei CBH1 and comparison to Thermomonospora fusca E5. Appl Biochem Biotechnol 45:245–256. doi:10.1007/BF02941803 CrossRefGoogle Scholar
  4. Bennett N, Ryan J, Biely P (1998) Biochemical and catalytic properties of an endoxylanase purified from culture filtrate of Thermomyces lanuginosus ATCC 46882. Carb Res 306(3):445–455. doi:10.1016/S0008-6215(97)10076-3 CrossRefGoogle Scholar
  5. Biely P, Puls J, Schneider H (1985) Acetyl xylan esterases in fungal cellulolytic systems. FEBS Lett 186(1):80–84. doi:10.1016/0014-5793(85)81343-0 CrossRefGoogle Scholar
  6. Biely P, MacKenzie C, Puls J et al (1986) Cooperativity of esterases and xylanases in the enzymatic degradation of acetyl xylan. Biotechnology 4(8):731–733. doi:10.1038/nbt0886-731 CrossRefGoogle Scholar
  7. Donohoe B, Decker S, Tucker M et al (2008) Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnol Bioeng 101(5):913–925. doi:10.1002/bit.21959 CrossRefGoogle Scholar
  8. Doran-Peterson J, Cook D, Brandon S (2008) Microbial conversion of sugars from plant biomass to lactic acid or ethanol. Plant J 54:582–592. doi:10.1111/j.1365-313X.2008.03480.x CrossRefGoogle Scholar
  9. Esteghlalian A, Bilodeau M, Mansfield S et al (2001) Do enzymatic hydrolyzability and Simons’ stain reflect the changes in the accessibility of lignocellulosic substrates to cellulase enzymes? Biotechnol Prog 17:1049–1054. doi:10.1021/bp0101177 CrossRefGoogle Scholar
  10. Gould J (1984) Alkaline peroxide delignification of agricultural residues to enhance enzymatic saccharification. Biotechnol Bioeng 26:46–52. doi:10.1002/bit.260260110 CrossRefGoogle Scholar
  11. Grohmann K, Mitchell D, Himmel M et al (1989) The role of ester groups in resistance of plant cell wall polysaccharides to enzymatic hydrolysis. Appl Biochem Biotechnol 20:45–61. doi:10.1007/BF02936472 CrossRefGoogle Scholar
  12. Henrissat B, Driguez H, Viet C et al (1985) Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Biotechnology 3(8):722–726. doi:10.1038/nbt0885-722 CrossRefGoogle Scholar
  13. Himmel M, Adney W, Fox J et al (1993) Isolation and characterization of 2 forms of Beta-d-Glucosidase from Aspergillus-niger. Appl Biochem Biotechnol 39:213–225. doi:10.1007/BF02918991 CrossRefGoogle Scholar
  14. Himmel M, Ding S, Johnson D et al (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807. doi:10.1126/science.1137016 CrossRefGoogle Scholar
  15. Ho N, Chen Z, Brainard A (1998) Genetically engineered Sacccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64:1852–1859Google Scholar
  16. Ingram L, Aldrich H, Borges A et al (1999) Enteric bacterial catalysts for fuel ethanol production. Biotechnol Prog 15:855–866. doi:10.1021/bp9901062 CrossRefGoogle Scholar
  17. Jeoh T, Ishizawa C, Davis M et al (2007) Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol Bioeng 98:112–122. doi:10.1002/bit.21408 CrossRefGoogle Scholar
  18. Keranen S, Penttila M (1995) Production of recombinant proteins in the filamentous fungus Trichoderma reesei. Curr Opin Biotechnol 6(5):534–537. doi:10.1016/0958-1669(95)80088-3 CrossRefGoogle Scholar
  19. Kim S, Holtzapple M (2006) Effect of structural features on enzyme digestibility of corn stover. Bioresour Technol 97:583–591. doi:10.1016/j.biortech.2005.03.040 CrossRefGoogle Scholar
  20. Kohlmann K, Westgate P, Velayudhan A et al (1996) Enzyme conversion of lignocellulosic plant materials for resource recovery in a controlled ecological life support system. Adv Space Res 18:251–265. doi:10.1016/0273-1177(95)00815-V CrossRefGoogle Scholar
  21. Kong F, Engler C, Soltes E (1992) Effects of cell-wall acetate, xylan backbone, and lignin on enzymatic-hydrolysis of Aspen wood. Appl Biochem Biotechnol 34:23–35. doi:10.1007/BF02920531 CrossRefGoogle Scholar
  22. Mitchell D, Grohmann K, Himmel M et al (1990) Effect of the degree of acetylation on the enzymatic digestion of acetylated xylan. J Wood Chem 10(1):111–121. doi:10.1080/02773819008050230 CrossRefGoogle Scholar
  23. Mohagheghi A, Dowe N, Schell D et al (2004) Performance of a newly developed integrant of Zymomonas mobilis for ethanol production on corn stover hydrolysate. Biotechnol Lett 26:321–325. doi:10.1023/B:BILE.0000015451.96737.96 CrossRefGoogle Scholar
  24. Mosier N, Hendrickson R, Ho N et al (2005) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour Technol 96:1986–1993. doi:10.1016/j.biortech.2005.01.013 CrossRefGoogle Scholar
  25. Nummi M, Nikupaavola M, Lappalainen A et al (1983) Cellobiohydrolase from Trichoderma reesei. Biochem J 215(3):677–683Google Scholar
  26. Poutanen K, Sundberg M (1988) An acetyl esterase of Trichoderma reesei and its role in the hydrolysis of acetyl xylan. Appl Microbiol Biotechnol 28:419–424. doi:10.1007/BF00268207 CrossRefGoogle Scholar
  27. Poutanen K, Sundberg M, Korte H et al (1990) Deacetylation of xylans by acetyl esterases of Trichoderma-reesei. Appl Microbiol Biotechnol 33:506–510. doi:10.1007/BF00172542 CrossRefGoogle Scholar
  28. Puls J, Tenkanen M, Korte H et al (1991) Products of hydrolysis of beechwood acetyl-4-o-methylglucuronxylan by a xylanase and an acetyl xylan esterase. Enzyme Microb Technol 13:483–487. doi:10.1016/0141-0229(91)90006-V CrossRefGoogle Scholar
  29. Rosgaard L, Pedersen S, Meyer A (2007) Comparison of different pretreatment strategies for enzymatic hydrolysis of wheat and barley straw. Appl Biochem Biotechnol 143:284–296. doi:10.1007/s12010-007-8001-6 CrossRefGoogle Scholar
  30. Schell D, Farmer J, Newman M et al (2003) Dilute-sulfuric acid pretreatment of corn stover in pilot-scale reactor—investigation of yields, kinetics, and enzymatic digestibilities of solids. Appl Biochem Biotechnol 105:69–85. doi:10.1385/ABAB:105:1-3:69 CrossRefGoogle Scholar
  31. Selig M, Viamajala S, Decker S et al (2007) Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol Prog 23:1333–1339. doi:10.1021/bp0702018 CrossRefGoogle Scholar
  32. Selig M, Knoshaug E, Adney W et al (2008a) Synergistic enhancement of cellobiohydrolase performance on pretreated corn stover by addition of xylanase and esterase activities. Bioresour Technol 99:4997–5005. doi:10.1016/j.biortech.2007.09.064 CrossRefGoogle Scholar
  33. Selig M, Knoshaug E, Decker S et al (2008b) Heterologous expression of Aspergillus niger beta-d-Xylosidase (XlnD): characterization on lignocellulosic substrates. Appl Biochem Biotechnol 146:57–68. doi:10.1007/s12010-007-8069-z CrossRefGoogle Scholar
  34. Sluiter A, Hames B, Ruiz R, et al (2004) Determination of structural carbohydrates and lignin in biomass. In: DOE (ed) National renewable energy laboratory, Technical Report:NREL/TP-510-42618Google Scholar
  35. Sun R, Sun X, Tomkinson J (2004) Hemicelluloses and their derivatives. In: Gatenholm P, Tenkanen M (eds) Hemicelluloses: science and technology. American Chemical Society, Washington, DC, pp 2–22Google Scholar
  36. Tenkanen M (1998) Action of Trichoderma reesei and Aspergillus oryzae esterases in the deacetylation of hemicelluloses. Biotechnol Appl Biochem 27:19–24Google Scholar
  37. Wyman C, Dale B, Elander R et al (2005a) Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover. Bioresour Technol 96:2026–2032. doi:10.1016/j.biortech.2005.01.018 CrossRefGoogle Scholar
  38. Wyman C, Dale B, Elander R et al (2005b) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96:1959–1966. doi:10.1016/j.biortech.2005.01.010 CrossRefGoogle Scholar
  39. Yang B, Wyman C (2004) Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol Bioeng 86:88–95. doi:10.1002/bit.20043 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Michael J. Selig
    • 1
  • William S. Adney
    • 1
  • Michael E. Himmel
    • 1
  • Stephen R. Decker
    • 1
  1. 1.National Renewable Energy LaboratoryChemical and Biosciences CenterGoldenUSA

Personalised recommendations