, Volume 16, Issue 4, pp 547–565 | Cite as

An economic and environmental comparison of a biochemical and a thermochemical lignocellulosic ethanol conversion processes

  • Thomas D. FoustEmail author
  • Andy Aden
  • Abhijit Dutta
  • Steven Phillips


With the world’s focus on rapidly deploying second generation biofuels technologies, there exists today a good deal of interest in how yields, economics, and environmental impacts of the various conversion processes of lignocellulosic biomass to transportation fuels compare. Although there is a good deal of information regarding these conversion processes, this information is typically very difficult to use on a comparison basis because different underlying assumptions, such as feedstock costs, plant size, co-product credits or assumed state of technology, have been utilized. In this study, a rigorous comparison of different biomass to transportation fuels conversion processes was performed with standard underlying economic and environmental assumptions so that exact comparisons can be made. This study looked at promising second-generation conversion processes utilizing biochemical and thermochemical gasification technologies on both a current and an achievable state of technology in 2012. The fundamental finding of this study is that although the biochemical and thermochemical processes to ethanol analyzed have their individual strengths and weaknesses, the two processes have very comparable yields, economics, and environmental impacts. Hence, this study concludes that based on this analysis there is not a distinct economic or environmental impact difference between biochemical and thermochemical gasification processes for second generation ethanol production.


Biofuel Biochemical Thermochemical Biomass Feedstock Ethanol Corn stover Gasification Catalyst Fuel synthesis Pretreatment Enzymatic hydrolysis Fermentation Energy efficiency Emission Inhibitor Recycle Mixed alcohol 



The work was supported by the US DOE Office of the Biomass Program.


  1. Aden A (2007) Water use in current and future biofuels processes. Southwest Hydrology Magazine, vol 6/No 5, September/October 2007. University of ArizonaGoogle Scholar
  2. Aden A (2008) Biochemical production of ethanol from corn stover: 2007 state of technology model, NREL/TP-510-43205, Golden.
  3. Aden A, Ruth M, Ibsen K, Jechura J, Neeves K, Sheehan J, Wallace B, Montague L, Slayton A, Lukas J (2002) Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. NREL/TP-510-32438, Golden.
  4. Albertazzi S, Basile F, Brandin J, Einvall J, Fornasari G, Hulteberg C, Sanati M, Trifiro F, Vaccari A (2007) Effect of fly ash and H2S on a Ni-based catalyst for the upgrading of a biomass-generated gas. Biomass Bioenergy 32(4):345–353. doi: 10.1016/j.biombioe.2007.10.002 CrossRefGoogle Scholar
  5. Bain R, Dayton DC, Carpenter DL, Czernik SR, Feik CJ, French RJ, Magrini-Bair KA, Phillips SD (2005) Evaluation of catalyst deactivation during catalytic steam reforming of biomass-derived syngas. Ind Eng Chem Res 44(21):7945–7956. doi: 10.1021/ie050098w CrossRefGoogle Scholar
  6. Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sustain Energy Rev 4(1):1–73CrossRefGoogle Scholar
  7. Carpenter DL, Deutsch SP, French RJ (2007) Quantitative measurement of biomass gasifier tars using a molecular-beam mass spectrometer: comparison with traditional impinger sampling. Energy Fuels 21(5):3036–3043. doi: 10.1021/ef070193c CrossRefGoogle Scholar
  8. Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuels 18(2):590–598CrossRefGoogle Scholar
  9. Energy production from biomass (2002) Part 2: conversion technologies. Bioresour Technol 83(1):47–54CrossRefGoogle Scholar
  10. Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, Kanman DM (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–509. doi: 10.1126/science.1121416 CrossRefGoogle Scholar
  11. Foust TD, Wallace R, Wooley R, Sheehan J, Ibsen K, Dayton D, Himmel M, Ashworth J, McCormick R, Hess JR, Wright C, Radtke C, Perlack R, Mielenz J, Wang M, Synder S, Werpy T (2007) A national laboratory market and technology assessment of the 30 × 30 scenario. Technical Report, NREL/TP-510-40942Google Scholar
  12. Foust TD, Ibsen KI, Dayton DC, Hess JR, Kenney KE (2008) The biorefinery. In: Himmel ED (ed) Biomass recalcitrance, deconstructing the plant cell wall for bioenergy, Chap. 2. Blackwell PublishingGoogle Scholar
  13. Gao Q, Zhang M, McMillan JD, Kompala DS (2002) Characterization of heterologous and native enzyme activity profiles in metabolically engineered Zymomonas mobilis strains during batch fermentation of glucose and xylose mixtures. Appl Biochem Biotechnol 98–100:341–355. doi: 10.1385/ABAB:98-100:1-9:341 CrossRefGoogle Scholar
  14. Hallen RT, Sealock LT, Cuello R, Bridgwater AV (1998) In: Kuester JL (ed) Research in thermochemical biomass conversion. Elsevier, LondonGoogle Scholar
  15. Hamelinck CN, Faaij A (2002) Future prospects for production of methanol and hydrogen from biomass. J Power Sources 111:1. doi: 10.1016/S0378-7753(02)00220-3 CrossRefGoogle Scholar
  16. Hamelinck CN, Faaij APC (2005) Outlook for advanced biofuels. Energy Policy 34(17):3268–3283. doi: 10.1016/j.enpol.2005.06.012 CrossRefGoogle Scholar
  17. Herman RG (2000) Advances in catalytic synthesis and utilization of higher alcohols. Catal Today 55(3):233–245. doi: 10.1016/S0920-5861(99)00246-1 CrossRefGoogle Scholar
  18. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels productions. Science 315:804–807CrossRefGoogle Scholar
  19. Houghton J, Weatherwax S, Ferrell J (2005) Breaking the biological barriers to cellulosic ethanol: a joint research agenda, biomass to biofuels, Rockville, 7–9 Dec 2005 (to order the report
  20. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098. doi: 10.1021/cr068360d CrossRefGoogle Scholar
  21. Jennings E, Schell D (2006) Evaluate alternative conditioning technology with the potential to eliminate sugar losses, NREL Internal Report (submitted)Google Scholar
  22. Lau MW, Dale BE, Balan V (2008) Ethanolic fermentation of hydrolysates from ammonia fiber expansion (AFEX) treated corn stover and distillers grain without detoxification and external nutrient supplementation. Biotechnol Bioeng 99(3):529–539. doi: 10.1002/bit.21609 CrossRefGoogle Scholar
  23. Magrini-Bair KA, Czernik S, French R, Parent YO, Chornet E, Dayton DC, Feik C, Bain R (2007) Fluidizable reforming catalyst development for conditioning biomass-derived syngas. Appl Catal Gen 318:199–208. doi: 10.1016/j.apcata.2006.11.005 CrossRefGoogle Scholar
  24. McMillan JD (1994) Conversion of hemicellulose hydrolyzates to ethanol. In: Himmel ME, Baker JO, Overend RA (eds) Enzymatic conversion of biomass for fuels production, ACS Symposium Series 556, American Chemical Society, Washington, DC, pp. 411–437Google Scholar
  25. Milne TA, Evans RJ, Abatzoglou N (1998) Biomass gasifier tars: their nature, formation and conversion; Report No. NREL/TP-570-25357, National Renewable Energy Laboratory: Golden.
  26. Mitchell D (2008) A note on rising food prices. Policy Research Working Paper 4682, The World Bank Development Prospects GroupGoogle Scholar
  27. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686. doi: 10.1016/j.biortech.2004.06.025 CrossRefGoogle Scholar
  28. Nishikawa J, Nakamura K, Asadullah M, Miyazawa T, Kunimori K, Tomishige K (2008) Catalytic performance of Ni/CeO2/Al2O3 modified with noble metals in steam gasification of biomass. Catal Today 131(1–4):146–155. doi: 10.1016/j.cattod.2007.10.066 CrossRefGoogle Scholar
  29. Nunes SM, Paterson N, Herod AA, Dugwell DR, Kandiyoti R (2008) Tar formation and destruction in a fixed bed reactor simulating downdraft gasification: optimization of conditions. Energy Fuels 22(3):1955–1964. doi: 10.1021/ef700662g CrossRefGoogle Scholar
  30. Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC (2005) Biomass as a feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply, DOE/GO-102005-2135. Oak Ridge National Laboratory, Oak RidgeGoogle Scholar
  31. Phillips SD (2007) Technoeconomic analysis of a lignocellulosic biomass indirect gasification process to make ethanol via mixed alcohols synthesis. Ind Eng Chem Res 46(26):8887–8897. doi: 10.1021/ie071224u CrossRefGoogle Scholar
  32. Phillips S, Aden A, Jechura J, Dayton D, Eggeman T (2007) Thermochemical ethanol via indirect gasification and mixed alcohol synthesis of lignocellulosic biomass. NREL/TP-510-41168, Golden.
  33. Pienkos PT, Zhang M (2008) Assemble comprehensive literature review on hydrolysate toxicity issue. NREL Internal Report (submitted)Google Scholar
  34. Rammamorth R, Kastury S, Smith WH (2000) Bioenergy: vision for the new millennium. Science Publishers, EnfieldGoogle Scholar
  35. Sandalow D (2008) Freedom from oil: how the next president can end the United States’ oil addiction, McGraw Hill, ISBN-13: 978-0-07-148906-5Google Scholar
  36. Sato K, FujiMoto K (2007) Development of new nickel based catalyst for tar reforming with superior resistance to sulfur poisoning and coking in biomass gasification. Catal Commun 8(11):1697–1701. doi: 10.1016/j.catcom.2007.01.028 CrossRefGoogle Scholar
  37. Selig MJ, Knoshaug EP, Decker SR, Baker JO, Himmel ME, Adney WS (2008) Heterologous expression of Aspergillus niger B-D-Xylosidase (XlnD): characterization on lignocellulosic substrates. Appl Biochem Biotechnol 146:57–68. doi: 10.1007/s12010-007-8069-z CrossRefGoogle Scholar
  38. Spath PL, Dayton DC (2003) Preliminary screening—technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas. NREL/TP-510-34929. National Renewable Energy Laboratory, GoldenGoogle Scholar
  39. Terter SA, Xu F, Nedwin GE, Cherry JR (2006) Enzymes for biorefineries, Chap. 16. In: Kamm B, Gruber PR, Kamm M (eds) Biorefineries-industrial processes and products status quo and future directions, vol 1, Verlag Gmbh and Co., Wiley-VCH, Weinheim, GemanyGoogle Scholar
  40. Timensen JAM, Faaij APC, Hemelinck CN (2002) Exploration of the possibilities for production of Fischer-Tropsch liquids and power via biomass gasification. Biomass Bioenergy 23:129. doi: 10.1016/S0961-9534(02)00037-5 CrossRefGoogle Scholar
  41. Torres W, Pansare SS, Goodwin JG (2007) Hot gas removal of tars, ammonia and hydrogen sulfide from biomass gasification gas. Catal Rev Sci Eng 49(4):407–456Google Scholar
  42. Trostle R (2008) Global agricultural supply and demand: factors contributing to the recent increase in food commodity prices, USDA—a report form the Economic Research Service, WRS-0801Google Scholar
  43. US DOE Biomass Multi-Year Program Plan (2008) Office of the biomass program, energy efficiency and renewable energy, U.S. DOE.
  44. Wender I (1996) Reactions of synthesis gas. Fuel Process Technol 48(3):1041–1048. doi: 10.1016/S0378-3820(96)01048-X Google Scholar
  45. Williams RH, Larson ED, Katofsky RE, Chen J (1995) Methanol and hydrogen from biomass for transportation, with comparisons to methanol and hydrogen from natural gas and coal. PU/CEES Report 292, Center for Energy and Environmental Studies, Princeton University, PrincetonGoogle Scholar
  46. Wooley R, Ruth M, Glassner D, Sheehan J (1999) Process design and costing of bioethanol technology: a tool for determining the status and direction of research and development. Biotechnol Prog 15:794. doi: 10.1021/bp990107u CrossRefGoogle Scholar
  47. Wright MM, Brown RC (2007) Comparative economics of biorefineries based on the biochemical and thermochemical platforms. Published online in Wiley InterScience ( Biofuels, Bioproducts Biorefining 1:49–56. doi  10.1002/bbb.8
  48. Wyman CE (1996) Handbook on bioethanol: production and utilization. Applied Energy Science Technology Series. Taylor and FrancisGoogle Scholar
  49. Yu F, Deng SB, Chen P, Liu YH, Wan YQ, Olson A, Kittelson D, Ruan R (2007) Physical and chemical properties of bio-oils from microwave pyrolysis of corn stover. Appl Biochem Biotechnol 137:957–970. doi: 10.1007/s12010-007-9111-x CrossRefGoogle Scholar
  50. Zeman Z (2007) Thermochemical versus biochemical. Biomass Magazine, June 2007Google Scholar
  51. Zhang M, Nagle N (2008) Define the relationships between corn stover hydrolysate conditioning and fermentation performance in lab equipment. NREL Internal Report (submitted)Google Scholar
  52. Zwart RWR, Boerrigter H (2005) High efficiency co-production of synthetic natural gas (SNG) and Fischer-Tropsch (FT) transportation fuels from biomss. Energy Fuels 19(2):591–597. doi: 10.1021/ef049837w CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Thomas D. Foust
    • 1
    Email author
  • Andy Aden
    • 1
  • Abhijit Dutta
    • 1
  • Steven Phillips
    • 1
  1. 1.National Bioenergy CenterNational Renewable Energy LaboratoryGoldenUSA

Personalised recommendations