Advertisement

Cellulose

, Volume 16, Issue 6, pp 983–987 | Cite as

Flocculation of cellulose fibres: new comparison of crowding factor with percolation and effective-medium theories

  • A. CelzardEmail author
  • V. Fierro
  • R. Kerekes
Article

Abstract

New comparisons of percolation and effective-medium theories on one hand, and predictions from the crowding factor on the other hand, are described for calculating critical concentrations in suspensions of cellulose fibres. The connectivity threshold from percolation theory appears to correspond to the “gel crowding factor”, which occurs at crowding factor (N) of N = 16 rather the criterion for fibre collisions, N = 1, postulated in earlier work. The rigidity threshold from percolation theory corresponds to the onset of coherent fibre flocs having mechanical network strength, which occurs at about N = 60. The latter value exceeds the gel crowding factor value by a factor of 3.75. In comparison, percolation theory predicts that flocculation occurs at a rigidity concentration four times higher than the connectivity threshold. These ratios are in good agreement.

Keywords

Cellulose Fibres Flocculation Papermaking Percolation Crowding factor 

References

  1. Celzard A, Deleuze C, Dufort M, Furdin G, Marêché JF, McRae E (1996) On the critical concentration in percolating systems containing a high aspect ratio filler. Phys Rev B 53:6209–6214. doi: https://doi.org/10.1103/PhysRevB.53.6209 CrossRefGoogle Scholar
  2. Celzard A, Marêché JF, Furdin G, Puricelli S (2000) Electrical conductivity of anisotropic expanded graphite-based monoliths. J Phys D Appl Phys 33:1556–1563. doi: https://doi.org/10.1088/0022-3727/33/12/318 CrossRefGoogle Scholar
  3. Celzard A, Krzesiñska M, Marêché JF, Puricelli S (2001) Scalar and vectorial percolation in compressed expanded graphite. Physica A 294:283–294. doi: https://doi.org/10.1016/S0378-4371(01)00038-3 CrossRefGoogle Scholar
  4. Celzard A, Marêché JF, Furdin G (2005a) Modelling of exfoliated graphite. Prog Mater Sci 50:93–179. doi: https://doi.org/10.1016/j.pmatsci.2004.01.001 CrossRefGoogle Scholar
  5. Celzard A, Treusch O, Marêché JF, Wegener G (2005b) Electrical and elastic properties of new monolithic wood-based carbon materials. J Mater Sci 40:63–70. doi: https://doi.org/10.1007/s10853-005-5688-z CrossRefGoogle Scholar
  6. Celzard A, Fierro V, Pizzi A (2008a) Flocculation of cellulose fibre suspensions: the contribution of percolation and effective-medium theories. Cellulose 15:803–814. doi: https://doi.org/10.1007/s10570-008-9229-1 CrossRefGoogle Scholar
  7. Celzard A, Pizzi A, Fierro V (2008b) Physical gelation of water-borne thermosetting resins by percolation theory—urea-formaldehyde, melamine-urea-formaldehyde, and melamine-formaldehyde resins. J Polym Sci B Pol Phys 46:971–978. doi: https://doi.org/10.1002/polb.21433 CrossRefGoogle Scholar
  8. Keep GT, Pecora R (1985) Re-evaluation of the dynamic model for rotational diffusion of thin, rigid rods in semidilute solution. Macromolecules 18:1167–1173. doi: https://doi.org/10.1021/ma00148a022 CrossRefGoogle Scholar
  9. Kerekes RJ (2006) Rheology of fibre suspensions in papermaking: an overview of recent research. Nordic Pulp Pap Res J 21:598–612. doi: https://doi.org/10.3183/NPPRJ-2006-21-05-p598-612 CrossRefGoogle Scholar
  10. Kerekes RJ, Schell CJ (1992) Characterization of fiber flocculation regimes by a crowding factor. J Pulp Pap Sci 18:J32–J38Google Scholar
  11. Landau LD, Lifshitz EM (1980) Electrodynamics of continuous media. Pergamon, New YorkGoogle Scholar
  12. Landauer R (1978) Electrical transport and optical properties of inhomogeneous media. In: Garland JC, Tanner DB (eds) AIP Conf Proc No 40. American Institute of Physics, New-York, pp 2–43CrossRefGoogle Scholar
  13. Martinez DM, Buckley K, Lindstrom A, Thiruvengadaswamy R, Olson JA, Ruth TJ, Kerekes RJ (2001) Characterizing the mobility of papermaking fibres during sedimentation. The Science of Papermaking 12th Fundamental Research Symposium. The Pulp and Paper Fundamental Research Society, Oxford, pp 25–254Google Scholar
  14. Martinez DM, Kiiskinen H, Ahlman AK, Kerekes RJ (2003) On the mobility of flowing papermaking suspensions and its relationship to formation. J Pulp Pap Sci 29:341–347Google Scholar
  15. Mason SG (1954) Fibre motions and flocculation. Tappi J 37:494–501Google Scholar
  16. Soszynski RM, Kerekes RJ (1988) Elastic interlocking of nylon fibres suspended in liquid. Nordic Pulp Pap Res J 4:172–179. doi: https://doi.org/10.3183/NPPRJ-1988-03-04-p172-179 CrossRefGoogle Scholar
  17. Stauffer D (1985) Introduction to percolation theory. Taylor & Francis, LondonCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Département Chimie et Physique des Solides et des Surfaces, Institut Jean Lamour, UMR CNRS 7198CNRS, Nancy-Université, UPV-Metz, ENSTIBÉpinal Cedex 9France
  2. 2.Département Chimie et Physique des Solides et des Surfaces, Faculté des Sciences & Techniques, Institut Jean Lamour, UMR CNRS 7198CNRS, Nancy-Université, UPV-MetzVandœuvre-lès-Nancy CedexFrance
  3. 3.Pulp and Paper CentreThe University of British ColumbiaVancouverCanada

Personalised recommendations