Cellulose

, Volume 16, Issue 5, pp 795–806 | Cite as

Assessing the combined benefits of clay and nanofibrillated cellulose in layered TMP-based sheets

Article

Abstract

A new concept for both furnish composition and z-directional furnish arrangement involving the interaction between specific thermo-mechanical pulp fractions (TMP), nanofibrillated cellulose (NFC) and clay in oriented layered laboratory sheets is presented. Used separately, NFC improves the strength properties of paper while fillers enhance the optical properties. Synergy effects of clay–NFC interactions are assessed. The study comprises a structural assessment, including laser profilometry, scanning electron microscopy (SEM) and field-emission (FE)-SEM analyses. In addition, optical and strength properties are assessed. It is demonstrated that a potential reduction of strength properties caused by filler addition may be counteracted by appropriate NFC addition to specific layers in the z-direction. Based on an estimation of an overall quality index considering five variables, it is concluded that the best sheet construction is obtained when placing the fillers in surface layers with the TMP accept fraction and the NFC in the centre of the sheets together with the refined TMP reject fraction.

Keywords

Microfibrillated cellulose (MFC) Mechanical properties Optical properties Scanning electron microscopy (SEM) Surface analysis techniques 

Notes

Acknowledgments

The authors thank Norske Skog Industrier ASA for financial and technical support, cooperation and permission to publish this work. Kristin Syverud and Øyvind Eriksen (PFI) are acknowledged for providing the nanofibrillated cellulose sample and product information. Ida Christiansen, Berit Leinsvang, Oksana Kalouzskaya, Merete Wiig, Kenneth Aasarød and Trond Karlsen (PFI) are acknowledged for their dedicated work at the laboratories. Kristin Syverud (PFI), Øyvind Gregersen (NTNU), Jan Hill (Norske Skog ASA) and Lars Johansson (PFI) are thanked for commenting the manuscript.

References

  1. Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8(10):3276–3278. doi:10.1021/bm700624p CrossRefGoogle Scholar
  2. Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics int 11(7):36–42Google Scholar
  3. Ahola S, Österberg M, Laine J (2008) Cellulose nanofibrils—adsorption with poly(amideamine) epichlorohydrin studied by QCM-D and application as a paper strength additive. Cellulose 15(2):303–314. doi:10.1007/s10570-007-9167-3 CrossRefGoogle Scholar
  4. Andresen M, Johansson L-S, Tanem BS, Stenius P (2006) Properties and characterization of hydrophobized microfibrilated cellulose. Cellulose 13:665–677. doi:10.1007/s10570-006-9072-1 CrossRefGoogle Scholar
  5. Bristow JA, Pauler N (1983) Multilayer structures in printing papers. Sven Papperstidn 86(15):R164–R172Google Scholar
  6. Brown RM, Montezinos D (1976) Cellulose microfibrils: visualization of biosynthetic and orienting complexes in association with the plasma membrance. Proc Natl Acad Sci USA 73:143–147. doi:10.1073/pnas.73.1.143 CrossRefGoogle Scholar
  7. Chinga G, Diserud O, Lunden-Berli E (2007a) On surface details affecting the quality of commercial SC papers for gravure printing. Nordic Pulp Pap Res J 22(3):331–335. doi:10.3183/NPPRJ-2007-22-03-p331-335 CrossRefGoogle Scholar
  8. Chinga G, Solheim O, Mörseburg K (2007b) Cross-sectional dimensions of fiber and pore networks based on Euclidean distance maps. Nordic Pulp Pap Res J 22(4):500–507. doi:10.3183/NPPRJ-2007-22-04-p500-507 CrossRefGoogle Scholar
  9. Chinga G, Johnsen PO, Dougherty R, Lunden-Berli E, Walter J (2007c) Quantification of the 3D microstructure of SC surfaces. J Microscopy-Oxford 227(3):254–265. doi:10.1111/j.1365-2818.2007.01809.x CrossRefGoogle Scholar
  10. Chinga-Carrasco G (2009) Exploring the multiscale structure of printing paper—a review of modern technology. J Microscopy-Oxford (in press)Google Scholar
  11. Eriksen Ø, Syverud K, Gregersen Ø (2008) The use of microfibrillated cellulose produced from kraft pulp as a strength enhancer in TMP paper. Nordic Pulp Pap Res J 23(3):299–304. doi:10.3183/NPPRJ-2008-23-03-p299-304 CrossRefGoogle Scholar
  12. Fernandez EO, Young RA (1994) An explanation for the deviation from linearity in properties of blends of mechanical and chemical pulps. Tappi J 77(3):221–224Google Scholar
  13. Frey-Wyssling A, Mühlethaler K (1963) Die elementarfibrillen der cellulose. Makromol Chem 62:25–31. doi:10.1002/macp.1963.020620103 CrossRefGoogle Scholar
  14. Gardner DJ, Oporto GS, Mills R, Samir MASA (2008) Adhesion and surface issues in cellulose and nanocellulose. J Adhes Sci Technol 22:545–567. doi:10.1163/156856108X295509 CrossRefGoogle Scholar
  15. Häggblom-Aghner U (1998) Layering of office paper. Pap Puu 80(7):508–513Google Scholar
  16. He J, Batchelor WJ, Johnston RE (2007) An analytical model for number of fibre-fibre contacts in paper and expressions for relative bonded area (RBA). J Mater Sci 42(2):522–528. doi:10.1007/s10853-006-1146-9 CrossRefGoogle Scholar
  17. Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated Cellulose: morphology and accessibility. J Appl Polym Sci Appl Polym Symp 37:797–813Google Scholar
  18. Holmstad R, Kure KA, Chinga G, Gregersen Ø (2004) Effect of temperature gradient multi-nip calendering on the structure of SC paper. Nordic Pulp Pap Res J 19(4):489–494. doi:10.3183/NPPRJ-2004-19-04-p489-494 CrossRefGoogle Scholar
  19. Ingmanson WL, Thode EF (1959) Factors contributing to the strength of a sheet of paper. Tappi 42(1):83–93Google Scholar
  20. Ioelovich M (2008) Nanostructured cellulose. BioResources 3(4):1403–1418 ReviewGoogle Scholar
  21. Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofribrillation and nanofiber network characteristics. Biomacromolecules 9:1022–1026. doi:10.1021/bm701157n CrossRefGoogle Scholar
  22. Jähne B (1993) Filterdesign. In: Digitale Bildbearbeitung. Springer, Berlin, pp 112–118Google Scholar
  23. Kinnunen JS, Lloyd MD, Nygren-Konttinen A (1998) A new world of papermaking—the layered SC-paper. Pap Puu 80(3):167–171Google Scholar
  24. Mohlin UB, Ölander K (1986) The influence of mechanical pulp quality on the properties of filler containing papers. Nordic Pulp Pap Res J 1(4):44–51. doi:10.3183/NPPRJ-1986-01-04-p044-051 CrossRefGoogle Scholar
  25. Mohlin UB, Wennberg K (1984) Some aspects of the interaction between mechanical and chemical pulps. Tappi J 67(1):90–93Google Scholar
  26. Moor H (1959) Platin-Kohle-Abdruck-Technik angewandt auf den Feinbau der Milcröhren. J Ultrastruct Res 2:393–422. doi:10.1016/S0022-5320(59)90003-6 CrossRefGoogle Scholar
  27. Ohad I, Danon D (1964) On the dimensions of cellulose microfibrils. J Cell Biol 22(1):302–305. doi:10.1083/jcb.22.1.302 CrossRefGoogle Scholar
  28. Pääkkö M, Ankefors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941. doi:10.1021/bm061215p CrossRefGoogle Scholar
  29. Page DH (1969) A theory for the tensile strength of paper. Tappi 52(4):674–681Google Scholar
  30. Puurtinen A (2004) Controlling filler distribution for improved fine paper properties. Appita J 57(3):204–209Google Scholar
  31. Retulainen E (1991) Properties of mechanical and chemical pulp blends. Int Pap Phys Conf 1991(2):449–462Google Scholar
  32. Retulainen E, Moss P, Nieminen K (1993) Effect of fines on the properties of fibre networks. In: 10th Fundamental Research Symposium Oxford, vol 2, pp 727–769Google Scholar
  33. Svagan AJ, Azizi Samir MAS, Berglund LA (2008) Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nanofibrils. Avd Mater 20:1263–1269. doi:10.1002/adma.200701215 CrossRefGoogle Scholar
  34. Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16(1):75–85. doi:10.1007/s10570-008-9244-2 CrossRefGoogle Scholar
  35. Taniguchi T, Okamura K (1998) New films produced from microfibrillated natural fibres. Polym Int 47(3):291–294. doi:10.1002/(SICI)1097-0126(199811)47:3<291::AID-PI11>3.0.CO;2-1 CrossRefGoogle Scholar
  36. Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Appl Polym Symp 37:815–827Google Scholar
  37. Wågberg L, Decher G, Norgren M, Lindström T, Ankefors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795. doi:10.1021/la702481v CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Paper and Fibre Research Institute (PFI AS)TrondheimNorway

Personalised recommendations