Advertisement

Cellulose

, Volume 16, Issue 2, pp 271–280 | Cite as

Investigation of endoglucanase selectivity on carboxymethyl cellulose by mass spectrometric techniques

  • Jonas Enebro
  • Dane MomcilovicEmail author
  • Matti Siika-aho
  • Sigbritt Karlsson
Article

Abstract

The benefits of applying cellulose selective enzymes as analytical tools for chemical structure characterization of cellulose derivatives have been frequently addressed over the years. In a recent study the high selectivity of cellulase Cel45A from Trichoderma reesei (Tr Cel45A) was utilized for relating the chemical structure to the flow properties of carboxymethyl cellulose (CMC). However, in order to take full advantage of the enzymatic hydrolysis the enzyme selectivity on the cellulose substrate must be further investigated. Therefore, the selectivity of Tr Cel45A on CMC was studied by chemical sample preparation of the enzyme products followed by mass spectrometric chemical structure characterization. The results strongly suggest that, in accordance with recent studies, also this highly selective endoglucanase is able to catalyze hydrolysis of glucosidic bonds adjacent to mono-substituted anhydroglucose units (AGUs). Furthermore, the results also indicate that substituents on the nearby AGUs will affect the hydrolysis.

Keywords

Carboxymethyl cellulose Selective hydrolysis Cellulase Permethylation MALDI ESI Mass spectrometry 

Notes

Acknowledgment

The authors thank CP Kelco for supplying carboxymethyl cellulose.

References

  1. Adden R, Mischnick P (2005) A novel method for the analysis of the substitution pattern of O-metyl-alpha- and beta-1,4-glucans by means of electrospray ionisation-mass spectrometry/collision induced dissociation. Int J Mass Spectrom 242:70–80. doi: 10.1016/j.ijms.2004.11.016 Google Scholar
  2. Adden R, Melander C, Brinkmalm G, Gorton L, Mischnick P (2006) New approaches to the analysis of enzymatically hydrolyzed methyl cellulose. Part 1. Investigation of the influence of structural parameters on the extent of degradation. Biomacromolecules 7:1399–1409. doi: 10.1021/bm050941+ CrossRefGoogle Scholar
  3. Andersson M, Wittgren B, Schagerlof H, Momcilovic D, Wahlund K-G (2004) Size and structure characterization of ethylhydroxyethyl cellulose by the combination of field-flow fractionation with other techniques. Investigation of ultra large components. Biomacromolecules 5:97–105. doi: 10.1021/bm030051z CrossRefGoogle Scholar
  4. Ciucanu I, Kerek F (1984) A simple and rapid method for the permethylation of carbohydrates. Carbohydr Res 131:209–217. doi: 10.1016/0008-6215(84)85242-8 CrossRefGoogle Scholar
  5. Cohen A, Schagerlof H, Nilsson C, Melander C, Tjerneld F, Gorton L (2004) Liquid chromatography–mass spectrometry analysis of enzyme-hydrolysed carboxymethylcellulose for investigation of enzyme selectivity and substituent pattern. J Chromatogr A 1029:87–95. doi: 10.1016/j.chroma.2003.12.010 CrossRefGoogle Scholar
  6. Davies GJ, Wilson KS, Henrissat B (1997) Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem J 321:557–559Google Scholar
  7. Domon B, Costello CE (1988) A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj J 5:397–409. doi: 10.1007/BF01049915 CrossRefGoogle Scholar
  8. Enebro J, Karlsson S (2006) Improved matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry of carboxymethyl cellulose. Rapid Commun Mass Spectrom 20:3693–3698. doi: 10.1002/rcm.2786 CrossRefGoogle Scholar
  9. Enebro J, Momcilovic D, Siika-aho M, Karlsson S (2007) A new approach for studying correlations between the chemical structure and the rheological properties in carboxymethyl cellulose. Biomacromolecules 8:3253–3257. doi: 10.1021/bm700547a CrossRefGoogle Scholar
  10. Eriksson KE, Hollmark BH (1969) Kinetic studies of the action of cellulase on sodium carboxymethyl cellulose. Arch Biochem Biophys 133:233–237. doi: 10.1016/0003-9861(69)90450-0 CrossRefGoogle Scholar
  11. Fitzpatrick F, Schagerlof H, Andersson T, Richardson S, Tjerneld F, Wahlund K-G et al (2006) NMR, cloud-point measurements and enzymatic depolymerization: complementary tools to investigate substituent patterns in modified celluloses. Biomacromolecules 7:2909–2917. doi: 10.1021/bm060281o CrossRefGoogle Scholar
  12. Gelman RA (1982) Characterization of carboxymethylcellulose: distribution of substituent groups along the chain. J Appl Polym Sci 27:2957–2964. doi: 10.1002/app.1982.070270820 CrossRefGoogle Scholar
  13. Horner S, Puls J, Saake B, Klohr E-A, Thielking H (1999) Enzyme-aided characterisation of carboxymethylcellulose. Carbohydr Polym 40:1–7. doi: 10.1016/S0144-8617(99)00046-6 CrossRefGoogle Scholar
  14. Ikonomou MG, Blades AT, Kebarle P (1991) Electrospray-ion spray: a comparison of mechanisms and performance. Anal Chem 63:1989–1998. doi: 10.1021/ac00018a017 CrossRefGoogle Scholar
  15. Kang P, Mechref Y, Novotny MV (2008) High-throughput solid-phase permethylation of glycans prior to mass spectrometry. Rapid Commun Mass Spectrom 22:721–734. doi: 10.1002/rcm.3395 CrossRefGoogle Scholar
  16. Karlsson J, Momcilovic D, Wittgren B, Schülein M, Tjerneld F, Brinkmalm G (2002a) Enzymatic degradation of carboxymethyl cellulose hydrolyzed by the endoglucanases Cel5A, Cel7B, and Cel45A from Humicola insolens and Cel7B, Cel12A and Cel45Acore from Trichoderma reesei. Biopolymers 63:32–40. doi: 10.1002/bip.1060 CrossRefGoogle Scholar
  17. Karlsson J, Siika-aho M, Tenkanen M, Tjerneld F (2002b) Enzymatic properties of the low molecular mass endoglucanases Cel12A (EG III) and Cel45A (EG V) of Trichoderma reesei. J Biotechnol 99:63–78. doi: 10.1016/S0168-1656(02)00156-6 CrossRefGoogle Scholar
  18. Mischnick P, Niedner W, Adden R (2005) Possibilities of mass spectrometry and tandem-mass spectrometry in the analysis of cellulose ethers. Macromol Symp 223:67–78. doi: 10.1002/masy.200550505 CrossRefGoogle Scholar
  19. Momcilovic D, Wittgren B, Wahlund K-G, Karlsson J, Brinkmalm G (2003a) Sample preparation effects in matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry of partially depolymerised carboxymethyl cellulose. Rapid Commun Mass Spectrom 17:1107–1115. doi: 10.1002/rcm.1032 CrossRefGoogle Scholar
  20. Momcilovic D, Wittgren B, Wahlund K-G, Karlsson J, Brinkmalm G (2003b) Sample preparation effects in matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry of partially depolymerised methyl cellulose. Rapid Commun Mass Spectrom 17:1116–1124. doi: 10.1002/rcm.1033 CrossRefGoogle Scholar
  21. Reese E (1957) Biological degradation of cellulose derivatives. Ind Eng Chem 49:89–93. doi: 10.1021/ie50565a033 CrossRefGoogle Scholar
  22. Reinhold VN, Reinhold BB, Costello CE (1995) Carbohydrate molecular weight profiling, sequence, linkage, and branching data: ES-MS and CID. Anal Chem 67:1772–1784. doi: 10.1021/ac00107a005 CrossRefGoogle Scholar
  23. Richardson S, Andersson T, Brinkmalm G, Wittgren B (2003) Analytical approaches to improved characterization of substitution in hydroxypropyl cellulose. Anal Chem 75:6077–6083. doi: 10.1021/ac0301604 CrossRefGoogle Scholar
  24. Richtzenhain H, Lindgren BO, Abrahamsson B, Holmberg K (1954) The alkaline degradation of polysaccharides. I. Degradation of cotton cellulose. Sven Papperstidning 57:363–366Google Scholar
  25. Saake B, Horner S, Kruse T, Puls J, Liebert T, Heinze T (2000) Detailed investigation on the molecular structure of carboxymethyl cellulose with unusual substitution pattern by means of an enzyme-supported analysis. Macromol Chem Phys 201:1996–2002. doi:10.1002/1521-3935(20001001)201:15<;1996::AID-MACP1996>;3.0.CO;2-XCrossRefGoogle Scholar
  26. Schagerlof H, Johansson M, Richardson S, Brinkmalm G, Wittgren B, Tjerneld F (2006a) Substituent distribution and clouding behavior of hydroxypropyl methyl cellulose analyzed using enzymatic degradation. Biomacromolecules 7:3474–3481. doi: 10.1021/bm0604799 CrossRefGoogle Scholar
  27. Schagerlof H, Richardson S, Momcilovic D, Brinkmalm G, Wittgren B, Tjerneld F (2006b) Characterization of chemical substitution of hydroxypropyl cellulose using enzymatic degradation. Biomacromolecules 7:80–85. doi: 10.1021/bm050430n CrossRefGoogle Scholar
  28. Spengler B, Dolce JW, Cotter RJ (1990) Infrared laser desorption mass spectrometry of oligosaccharides: fragmentation mechanisms and isomer analysis. Anal Chem 62:1731–1737. doi: 10.1021/ac00216a004 CrossRefGoogle Scholar
  29. Tuting W, Adden R, Mischnick P (2004a) Fragmentation pattern of regioselectively O-methylated maltooligosaccharides in electrospray ionisation-mass spectrometry/collision induced dissociation. Int J Mass Spectrom 232:107–115. doi: 10.1016/j.ijms.2003.12.004 CrossRefGoogle Scholar
  30. Tuting W, Wegemann K, Mischnick P (2004b) Enzymatic degradation and electrospray tandem mass spectrometry as tools for determining the structure of cationic starches prepared by wet and dry methods. Carbohydr Res 339:637–648. doi: 10.1016/j.carres.2003.12.012 CrossRefGoogle Scholar
  31. Wirick MG (1968) A study of the enzymic degradation of CMC and other cellulose ethers. J Polym Sci 6:1965–1974Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Jonas Enebro
    • 1
  • Dane Momcilovic
    • 1
    Email author
  • Matti Siika-aho
    • 2
  • Sigbritt Karlsson
    • 1
  1. 1.School of Chemical Science and Engineering, Fiber and Polymer TechnologyRoyal Institute of Technology (KTH)StockholmSweden
  2. 2.VTT Technical Research Center of FinlandEspooFinland

Personalised recommendations