Cellulose

, 16:75 | Cite as

Strength and barrier properties of MFC films

Article

Abstract

The preparation of microfibrillar cellulose (MFC) films by filtration on a polyamide filter cloth, in a dynamic sheet former and as a surface layer on base paper is described. Experimental evidence of the high tensile strength, density and elongation of films formed by MFC is given. Typically, a MFC film with basis weight 35 g/m2 had tensile index 146 ± 18 Nm/g and elongation 8.6 ± 1.6%. The E modulus (17.5 ± 1.0 GPa) of a film composed of randomly oriented fibrils was comparable to values for cellulose fibres with a fibril angle of 50°. The strength of the films formed in the dynamic sheet former was comparable to the strength of the MFC films prepared by filtration. The use of MFC as surface layer (0–8% of total basis weight) on base paper increased the strength of the paper sheets significantly and reduced their air permeability dramatically. FEG-SEM images indicated that the MFC layer reduced sheet porosity, i.e. the dense structure formed by the fibrils resulted in superior barrier properties. Oxygen transmission rates (OTR) as low as 17 ml m−2 day−1 were obtained for films prepared from pure MFC. This result fulfils the requirements for oxygen transmission rate in modified atmosphere packaging.

Keywords

MFC Strength Barrier MFC films Microfibrillar cellulose Nano cellulose Paper 

References

  1. Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibres with a uniform weight of 15 nm from wood. Biomacromolecules 8:3276–3278. doi:10.1021/bm700624p CrossRefGoogle Scholar
  2. Ackerman P, Jägerstad M, Ohlsson T (eds) (1997) Foods and packaging materials. Chemical interactions. The Royal Society of Chemistry, CambridgeGoogle Scholar
  3. Alava M, Niskanen K (2006) The physics of paper. Rep Prog Phys 69:669–723. doi:10.1088/0034-4885/69/3/R03 CrossRefGoogle Scholar
  4. Andresen M, Stenius P (2007) Water-in-oil emulsions stabilized by hydrophobized microfibrillated cellulose. J Dispersion Sci Technol 28(5):837–844. doi:10.1080/01932690701341827 Google Scholar
  5. Andresen M, Johansson L-S, Tanem BS, Stenius P (2006) Properties and characterization of hydrophobized microfibrilated cellulose. Cellulose 13:665–677. doi:10.1007/s10570-006-9072-1 CrossRefGoogle Scholar
  6. Andresen M, Stenstad P, Møretrø T, Langsrud S, Syverud K, Johansson L-S et al (2007) Nonleaching antimicrobial films prepared from surface-modified microfibrillated cellulose. Biomacromolecules 8(7):2149–2155. doi:10.1021/bm070304e CrossRefGoogle Scholar
  7. Bruce DM, Hobson RN, Farrent JW, Hepworth DG (2005) High-performance composites from low-cost plant primary cell walls. Compos Part A 26:1486–1493. doi:10.1016/j.compositesa.2005.03.008 CrossRefGoogle Scholar
  8. Cox HL (1952) The elasticity and strength of paper and other fibrous materials. Br J Appl Phys 3(3):72–79. doi:10.1088/0508-3443/3/3/302 CrossRefGoogle Scholar
  9. Dodson CTJ, Herdman PT (1982) Mechanical properties of paper. In: Rance HF (ed) Handbook of paper science 2, the structural and physical properties of paper. Elsevier, Amsterdam, pp 108–109Google Scholar
  10. Dufresne A, Cavaillé J-Y, Vignon MR (1998) Mechanical behaviour of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64(6):1185–1194. doi:10.1002/(SICI)1097-4628(19970509)64:6<1185::AID-APP19>3.0.CO;2-VCrossRefGoogle Scholar
  11. Eriksen Ø, Gregersen ØW, Syverud K (2008) The effect of MFC on handsheet surface and printing properties. In: Proceedings, progress in paper physics seminar, June 2–5, Espoo, FinlandGoogle Scholar
  12. Fellers C, Norman B (1996) Pappersteknik. Avdelingen för Pappersteknik, Kungl Tekniska Högskolan, Stockholm. ISBN: 91-7170-741-7, TABS-Tryckeri AB i Småland, 292 ppGoogle Scholar
  13. Fendler A, Villanueva MP, Giminez E, Lagarón JM (2007) Characterization of the barrier properties of composites of HDPE and purified cellulose fibres. Cellulose 14:427–438. doi:10.1007/s10570-007-9136-x CrossRefGoogle Scholar
  14. Fengel D, Grosser D (1976) Holz, “Morphologie und Eigenschaften”. In: Ullmanns Encyklopädie der technischen Chemie, 4th edn, vol 12. Verlag Chemie, Weinheim, pp 669–679Google Scholar
  15. Fink H-P, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524. doi:10.1016/S0079-6700(01)00025-9 CrossRefGoogle Scholar
  16. Henriksson M, Berglund L (2007) Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. J Appl Polym Sci 106:2817–2824. doi:10.1002/app.26946 CrossRefGoogle Scholar
  17. Khopade AJ, Jain NK (1990) A stable multiple emulsion system bearing isoniazid: preparation and characterization. Drug Dev Ind Pharm 24(3):289–293. doi:10.3109/03639049809085622 CrossRefGoogle Scholar
  18. Kjellgren H, Engström G (2006) Influence of base paper on the barrier properties of chitosan-coated paper. Nordic Pulp Pap Res J 21(5):685–689. doi:10.3183/NPPRJ-2006-21-05-p685-689 CrossRefGoogle Scholar
  19. Krochta JM, Baldwin EA, Nisperos-Carriedo MO (eds) (1994) Edible coatings and films to improve food quality. TECHNOMIC Publishing, LancasterGoogle Scholar
  20. Lagaron JM, Catalá R, Gavara R (2004) Structural characteristics defining high barrier properties in polymeric materials. Mater Sci Technol 20:1–7. doi:10.1179/026708304225010442 CrossRefGoogle Scholar
  21. López-Rubio A, Lagaron JM, Ankerfors M, Lindström T, Nordqvist D, Mattozzi A et al (2007) Enhanced film forming and film properties of amylopectin using micro-fibrillated cellulose. Carbohydr Polym 68(4):718–727. doi:10.1016/j.carbpol.2006.08.008 Google Scholar
  22. Malainine ME, Mahrouz M, Dufresne A (2005) Thermoplastic nanocomposites based on cellulose microfibrils from Opuntia ficus-indica parenchyma cell. Compos Sci Technol 65:1520–1526. doi:10.1016/j.compscitech.2005.01.003 CrossRefGoogle Scholar
  23. Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A 80:155–159. doi:10.1007/s00339-003-2225-2 CrossRefGoogle Scholar
  24. Ougiya H, Watanabe K, Morinaga Y, Yoshinaga F (1997) Emulsion-stabilizing effect of bacterial cellulose. Biosci Biotechnol Biochem 61:1541–1545CrossRefGoogle Scholar
  25. Oza KP, Frank SGJ (1986) Microcrystalline cellulose stabilized emulsions. J Dispersion Sci Technol 7:543–561. doi:10.1080/01932698608943478 CrossRefGoogle Scholar
  26. Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(3):1934–1941. doi:10.1021/bm061215p CrossRefGoogle Scholar
  27. Page DH, El-Hosseiny F, Winkler K, Lancaster APS (1977) Elastic modulus of single wood pulp fibres. Tappi J 60(4):114–117Google Scholar
  28. Parry RT (1993) Principles and applications of modified atmosphere packaging of foods. Chapman & Hall, SuffolkGoogle Scholar
  29. Stenstad P, Andresen M, Tanem BS, Stenius P (2008) Chemical modifications of microfibrillated cellulose. Cellulose 15(1):35–45. doi:10.1007/s10570-007-9143-y CrossRefGoogle Scholar
  30. Taniguchi T (1998) New films produced from microfibrillated natural fibres. Polym Int 47:291–294. doi:10.1002/(SICI)1097-0126(199811)47:3<291::AID-PI11>3.0.CO;2-1CrossRefGoogle Scholar
  31. Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Appl Polym Symp 37:815–827Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Paper and Fibre Research Institute (PFI)TrondheimNorway
  2. 2.Ugelstad Laboratory, Department of Chemical EngineeringNTNUTrondheimNorway

Personalised recommendations