, Volume 16, Issue 1, pp 65–74 | Cite as

Indirect evidence of supramolecular changes within cellulose microfibrils of chemical pulp fibers upon drying

  • Eero KontturiEmail author
  • Tapani Vuorinen


Dried and never-dried chemical pulps were subjected to strong sulfuric acid hydrolysis and the dimensions of the resulting cellulose nanocrystals (CNCs) were characterized by AFM image analysis. Although the average length of CNCs was fairly similar in all samples (55–65 nm), the length distribution histograms revealed that a higher number of longer crystals and a lower number of shorter crystals were present in the CNC suspensions prepared from never-dried pulps. The distinction was hypothetically ascribed to tensions building in individual cellulose microfibrils upon drying, resulting in irreversible supramolecular changes in the amorphous regions. The amorphous regions shaped by tensions were deemed as more susceptible to acid hydrolysis.


Cellulose microfibrils Hornification Nanocrystalline cellulose Thermal drying 



The authors thank Mr. Timo Pääkkönen for laboratory assistance. Dr. Juha Linnekoski at the Department of Chemistry (TKK) is acknowledged for performing the sulfur analysis. The Finnish Funding Agency for Technology and Innovation (TEKES) as well as Andritz, UPM-Kymmene, Kemira, Metso, and M-real corporations are acknowledged for the financial support.


  1. Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278. doi: 10.1021/bm700624p CrossRefGoogle Scholar
  2. Andresen M, Stenstad P, Møretrø T, Langsrud S, Syverud K, Johansson L-S et al (2007) Nonleaching antimicrobial films prepared from surface-modified microfibrillated cellulose. Biomacromolecules 8:2149–2155. doi: 10.1021/bm070304e CrossRefGoogle Scholar
  3. Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A Physicochem Eng Asp 142:75–82. doi: 10.1016/S0927-7757(98)00404-X CrossRefGoogle Scholar
  4. Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626. doi: 10.1021/bm0493685 CrossRefGoogle Scholar
  5. Barzyk D, Page DH, Ragauskas A (1997) Acidic group topochemistry and fiber-to-fiber specific bond strength. J Pulp Pap Sci 23:J59–J61Google Scholar
  6. Battista OA, Coppick S, Howsmon JA, Morehead FF, Sisson WA (1956) Level-off degree of polymerization. Ind Eng Chem 48:333–335. doi: 10.1021/ie50554a046 CrossRefGoogle Scholar
  7. Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054. doi: 10.1021/bm049300p CrossRefGoogle Scholar
  8. Chen W, Lickfield G, Yang CQ (2004) Molecular modeling of cellulose in amorphous state. Part I: model building and plastic deformation study. Polymer (Guildf) 45:1063–1071. doi: 10.1016/j.polymer.2003.11.020 CrossRefGoogle Scholar
  9. da Silva Perez D, van Heiningen ARP (2002) Determination of cellulose degree of polymerization in chemical pulps by viscosimetry. In: Seventh European workshop on lignocellulosics and pulp: proceedings. Åbo Akademi, Turku, pp 393–396Google Scholar
  10. Davidson TC, Newman RH, Ryan MJ (2004) Variations in the fibre repeat between samples of cellulose I from different sources. Carbohydr Res 339:2889–2893. doi: 10.1016/j.carres.2004.10.005 CrossRefGoogle Scholar
  11. de Souza Lima MM, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25:771–787. doi: 10.1002/marc.200300268 CrossRefGoogle Scholar
  12. Edgar CD, Gray DG (2003) Smooth cellulose I surfaces from nanocrystal suspensions. Cellulose 10:299–306. doi: 10.1023/A:1027333928715 CrossRefGoogle Scholar
  13. Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65. doi: 10.1021/bm700769p CrossRefGoogle Scholar
  14. Fahlén J, Salmén L (2005) Pore and matrix distribution in the fiber wall revealed by atomic force microscopy and image analysis. Biomacromolecules 6:433–438. doi: 10.1021/bm040068x CrossRefGoogle Scholar
  15. Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–508. doi: 10.1126/science.1121416 CrossRefGoogle Scholar
  16. Fernandes Diniz JMB, Gil MH, Castro JAAM (2004) Hornification—its origin and interpretation in wood pulps. Wood Sci Technol 37:489–494. doi: 10.1007/s00226-003-0216-2 CrossRefGoogle Scholar
  17. Fink HP, Hofmann D, Purz HJ (1990) Zur Fibrillarstruktur nativer cellulose. Acta Polym 41:131–137. doi: 10.1002/actp. 1990.010410213 CrossRefGoogle Scholar
  18. Fleming K, Gray DG, Matthews S (2001) Cellulose crystallites. Chem Eur J 7:1831–1835. doi:10.1002/1521-3765(20010504)7:9<1831::AID-CHEM1831>3.0.CO;2-SCrossRefGoogle Scholar
  19. Hernadi A, Dömötör J (1981) Water take-up and swelling of cellulose fibers after thermal treatment. Cellulose Chem Technol 15:63–75Google Scholar
  20. Higgins HG, McKenzie AW (1963) The structure and properties of paper XIV. Effects of drying cellulose fibers and the problem of maintaining pulp strength. Appita 16:145–164Google Scholar
  21. Hubbe MA, Vendetti R, Rojas OJ (2007) What happens to cellulosic fibers during papermaking and recycling? A review. BioResources 2:739–788Google Scholar
  22. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts and engineering. Chem Rev 106:4044–4098. doi: 10.1021/cr068360d CrossRefGoogle Scholar
  23. Hult E-L, Larsson PT, Iversen T (2001) Cellulose fibril aggregation—an inherent property of kraft pulps. Polymer (Guildf) 42:3309–3314. doi: 10.1016/S0032-3861(00)00774-6 CrossRefGoogle Scholar
  24. Hult E-L, Liitiä T, Maunu SL, Hortling B, Iversen T (2002) A CP/MAS 13C-NMR study of cellulose structure on the surface of refined kraft pulp fibers. Carbohydr Polym 49:231–234. doi: 10.1016/S0144-8617(01)00309-5 CrossRefGoogle Scholar
  25. Jayme G (1944) Mikro-Quellungsmessungen an Zellstoffen. Papier-Fabrikant/Wochenblatt für Papierfabrikation 42:187–194Google Scholar
  26. Kim J, Yun S, Ounaies Z (2006) Discovery of cellulose as a smart material. Macromolecules 39:4202–4206. doi: 10.1021/ma060261e CrossRefGoogle Scholar
  27. Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393. doi: 10.1002/anie.200460587 CrossRefGoogle Scholar
  28. Kontturi E, Johansson L-S, Kontturi KS, Ahonen P, Thüne PC, Laine J (2007) Cellulose nanocrystal submonolayers by spin coating. Langmuir 23:9674–9680. doi: 10.1021/la701262x CrossRefGoogle Scholar
  29. Kvien I, Tanem BS, Oksman K (2005) Characterization of cellulose whiskers and their nanocomposites by atomic force microscopy and electron microscopy. Biomacromolecules 6:3160. doi: 10.1021/bm050479t CrossRefGoogle Scholar
  30. Laine J, Lindström T, Bremberg C, Glad-Nordmark G (2003) Studies on topochemical modification of cellulosic fibres. Part 4: toposelectivity of carboxymethylation and its effects on the swelling of fibres. Nord Pulp Pap Res J 18:316–324. doi: 10.3183/NPPRJ-2003-18-03-p316-324 CrossRefGoogle Scholar
  31. Laivins GV, Scallan AM (1993) The mechanism of hornification of wood pulps. In: Baker CF (ed) Products of papermaking: transactions of the 10th fundamental research symposium held at Oxford, vol 2. Pira International, Leatherhead, pp 1235–1260 September 1993Google Scholar
  32. Liitiä T, Maunu SL, Hortling B, Tamminen T, Pekkala O, Varhimo A (2003) Cellulose crystallinity and ordering of hemicelluloses in pine and birch pulps as revealed by solid-state NMR spectroscopic methods. Cellulose 10:307–316. doi: 10.1023/A:1027302526861 CrossRefGoogle Scholar
  33. Maloney TC, Paulapuro H (1999) The formation of pores in the cell wall. J Pulp Pap Sci 25:430–436Google Scholar
  34. Mark H (1940) Intermicellar hole and tube system in fiber structure. J Phys Chem 44:764–788. doi: 10.1021/j150402a009 CrossRefGoogle Scholar
  35. Matsuda Y, Isogai A, Onabe F (1994) Effects of thermal and hydrothermal treatments on the reswelling capabilities of pulps and paper sheets. J Pulp Pap Sci 20:J323–J327Google Scholar
  36. Nazhad MM, Paszner L (1994) Fundamentals of strength loss in recycled paper. Tappi J 77:171–179Google Scholar
  37. Newman RH (2004) Carbon-13 NMR evidence for cocrystallization of cellulose as a mechanism for hornification of bleached kraft pulp. Cellulose 11:45–52. doi: 10.1023/B:CELL.0000014768.28924.0c CrossRefGoogle Scholar
  38. Nishiyama Y, Kim U-J, Kim D-Y, Katsumata KS, May RP, Langan P (2003) Periodic disorder along ramie cellulose microfibrils. Biomacromolecules 4:1013–1017. doi: 10.1021/bm025772x CrossRefGoogle Scholar
  39. Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941. doi: 10.1021/bm061215p CrossRefGoogle Scholar
  40. Page DH (1985) The mechanism of strength development of dried pulps by heating. Sven Papperstidn 88:R30–R35Google Scholar
  41. Rånby BG (1951) The colloidal properties of cellulose micelles. Discuss Faraday Soc 11:158–164. doi: 10.1039/df9511100158 CrossRefGoogle Scholar
  42. Rebuzzi F, Evtuguin DV (2006) Effect of glucuronoxylan on the hornification of Eucalyptus globulus bleached pulps. Macromol Symp 232:121–128. doi: 10.1002/masy.200551414 CrossRefGoogle Scholar
  43. Röder T, Sixta H (2004) Thermal treatment of cellulose pulps and its influence to cellulose reactivity. Lenzinger Ber 83:79–83Google Scholar
  44. Scallan AM, Tigerström AC (1992) Swelling and elasticity of the cell walls of pulp fibres. J Pulp Pap Sci 18:J188–J193Google Scholar
  45. Schneider M, Brinkmann M, Möhwald H (2003) Adsorption of polyethyleneimine on graphite: an atomic force microscopy study. Macromolecules 36:9510–9518. doi: 10.1021/ma0345293 CrossRefGoogle Scholar
  46. Staudinger H, Dohle W, Heick O (1942) Über topochemische Reaktionen der cellulose. J Prakt Chem 161:191–218. doi: 10.1002/prac.19431610803 CrossRefGoogle Scholar
  47. Steege H-H, Philipp B (1974) Herstellung, Charakterisierung und Anwendung mikrokristalliner Zellulose. Zellst Pap 23:68–73Google Scholar
  48. Stone JE, Scallan AM (1965) Effect of component removal upon the porous structure of the cell wall of wood. J Polym Sci C 11:13–25Google Scholar
  49. Unger E-W, Fink H-P, Philipp B (1995) Morphometrische Untersuchung des Quell- und Lösevorgangs von Cellulosefasern in EWNN und LiCl/Dimethylacetamid. Papier 49:297–307Google Scholar
  50. Welf ES, Venditti RA, Hubbe MA, Pawlak JJ (2005) The effects of heating without water removal and drying on the swelling as measured by water retention value and degradation as measured by intrinsic viscosity of cellulose papermaking fibers. Prog Pap Recycling 14:5–13Google Scholar
  51. Wistara N, Young RA (1999) Properties and treatments of pulps from recycled paper. Part I: physical and chemical properties of pulps. Cellulose 6:291–324. doi: 10.1023/A:1009221125962 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Forest Products TechnologyHelsinki University of TechnologyHelsinkiFinland

Personalised recommendations