, Volume 15, Issue 4, pp 507–513 | Cite as

An estimation of the Young’s modulus of bacterial cellulose filaments

  • Y.-C. Hsieh
  • H. Yano
  • M. Nogi
  • S. J. EichhornEmail author


An estimation, using a Raman spectroscopic technique, of the Young’s modulus of a single filament of bacterial cellulose is presented. This technique is used to determine the local molecular deformation of the bacterial cellulose via a shift in the central position of the 1095 cm–1 Raman band, which corresponds to the stretching of the glycosidic bond in the backbone of the cellulose structure. By calculating the shift rate with respect to the applied strain it is shown that the stiffness of a single fibril of bacterial cellulose can be estimated. In order to perform this estimation, networks of fibres are rotated through 360° and the intensity of the 1095 cm−1 Raman band is recorded. It is shown that the intensity of this band is largely independent of the angle of rotation, which suggests that the networks are randomly distributed. The modulus is predicted from a calibration of Raman band shift against modulus, using previously published data, and by using Krenchel analysis to back-calculate the modulus of a single fibril. The value obtained (114 GPa) is higher than previously reported values for this parameter, but lower than estimates of the crystal modulus of cellulose-I (130–145 GPa). Reasons for these discrepancies are given in terms of the crystallinity and structural composition of the samples.


Bacterial cellulose Deformation Modulus Stiffness Raman spectroscopy 


  1. Astley OM, Chanliaud E, Donald AM, Gidley MJ (2003) Tensile deformation of bacterial cellulose composites. Int J Biol Macromol 32:28–35CrossRefGoogle Scholar
  2. Batchelder DN, Bloor D (1979) Strain dependence of the vibrational-modes of a diacetylene crystal. J Polym Sci – Polym Phys Edn 17:569–581CrossRefGoogle Scholar
  3. Benziman M, Brown RM, Cooper K, Haigler C, White A (1980) Cellulose biogenesis – polymerization and crystallization are coupled processes in Acetobacter-xylinum. PNAS 77:6678–6682CrossRefGoogle Scholar
  4. Brown RM (1989) Bacterial cellulose. In: Kennedy JF, Phillips GO, Williams PA (eds) Cellulose: structural and functional aspects, 1st edn. Ellis Horwood Ltd, ChichesterGoogle Scholar
  5. Czaja WK, Young DJ, Kawecki M, Brown RM (2006) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12CrossRefGoogle Scholar
  6. Edwards HGM, Farwell DW, Webster D (1997) FT Raman microscopy of untreated natural plant fibres. Spectrochim Acta A 53:2383–2392CrossRefGoogle Scholar
  7. Eichhorn SJ, Davies GR (2006) Modelling the crystalline deformation of native and regenerated cellulose. Cellulose 13:291–307CrossRefGoogle Scholar
  8. Eichhorn SJ, Young RJ (2001) The Young’s modulus of a microcrystalline cellulose. Cellulose 8:197–207CrossRefGoogle Scholar
  9. Eichhorn SJ, Sirichaisit J, Young RJ (2001) Deformation mechanisms in cellulose fibres, paper and wood. J Mater Sci 36:3129–3135CrossRefGoogle Scholar
  10. Gierlinger N, Schwanninger M, Reinecke A, Burgert I (2006) Molecular changes during tensile deformation of single wood fibres followed by Raman microscopy. Biomacromolecules 7:2077–2081CrossRefGoogle Scholar
  11. Gindl W, Keckes J (2004) Tensile properties of cellulose acetate butyrate composites reinforced with bacterial cellulose. Compos Sci Technol 64:2407–2413CrossRefGoogle Scholar
  12. Guhados G, Wan W, Hutter JL (2005) Measurement of the elastic modulus of single bacterial cellulose fibres using atomic force microscopy. Langmuir 21:6642–6646CrossRefGoogle Scholar
  13. Hamad WY, Eichhorn SJ (1997) Deformation micromechanics of regenerated cellulose fibres using Raman spectroscopy. ASME J Eng Mat Technol 119:309–313CrossRefGoogle Scholar
  14. Hestrin S, Schramm M. (1954) Synthesis of cellulose by Acetobacter-xylinum .2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58:345–352Google Scholar
  15. Krenchel H (1964) Fibre reinforcement. Akademisk Forlag, CopenhagenGoogle Scholar
  16. Larsson PT, Westermark U, Iversen T (1995) Determination of the cellulose I alpha allomorph content in a tunicate cellulose by CP/MAS C-13-NMR spectroscopy. Carbohydr Res 278:339–343CrossRefGoogle Scholar
  17. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441CrossRefGoogle Scholar
  18. Mitra VK, Risen WM, Baughman RH (1977) Laser Raman study of stress dependence of vibrational frequencies of a monocrystalline polydiacetylene. J Chem Phys 66:2731–2736CrossRefGoogle Scholar
  19. Nishi Y, Uryu M, Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S (1990) The structure and mechanical-properties of sheets prepared from bacterial cellulose. 2. Improvement of the mechanical-properties of sheets and their applicability to diaphragms of electroacoustic transducers. J Mater Sci 25:2997–3001CrossRefGoogle Scholar
  20. Nishino T, Takano K, Nakamae K (1995) Elastic-modulus of the crystalline regions of cellulose polymorphs. J Polym Sci B – Polym Phys 33:1647–1651CrossRefGoogle Scholar
  21. Peetla P, Schenzel KC, Diepenbrock W (2006) Determination of mechanical strength properties of hemp fibers using near-infrared Fourier transform Raman microspectroscopy. Appl Spectrosc 60:682–691CrossRefGoogle Scholar
  22. Reiling S, Brickmann J (1995) Theoretical investigations on the structure and physical-properties of cellulose. Macromol Theor Simul 4:725–743CrossRefGoogle Scholar
  23. Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57:651–660CrossRefGoogle Scholar
  24. Sturcova A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061CrossRefGoogle Scholar
  25. Sugiyama J, Vuong R, Chanzy H (1991) Electron-diffraction study on the 2 crystalline phases occurring in native cellulose from an algal cell-wall. Macromolecules 24:4168–4175CrossRefGoogle Scholar
  26. Tajima K, Fujiwara M, Takai M, Hayashi J (1995) Synthesis of bacterial cellulose composite by Acetobacter xylinum. I. Its mechanical strength and biodegradability. Mokuzai Gakkaishi 41:749–757Google Scholar
  27. van der Hart D, Atalla RH (1984) Native cellulose – a composite of 2 distinct crystalline forms. Science 223:283–285CrossRefGoogle Scholar
  28. Watanabe K, Tabuchi M, Morinaga Y, Yoshinaga F (1998) Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5:187–200CrossRefGoogle Scholar
  29. Wiley JH, Atalla RH (1987) Band assignments in the Raman spectra of celluloses. Carbohydr Res 160:113–129CrossRefGoogle Scholar
  30. Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, Uryu M (1989) The structure and mechanical-properties of sheets prepared from bacterial cellulose. J Mater Sci 24:3141–3145CrossRefGoogle Scholar
  31. Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibres. Adv Mater 17:153–155CrossRefGoogle Scholar
  32. Young RJ, Eichhorn SJ (2007) Deformation mechanisms in polymer fibres and nanocomposites. Polymer 48:2–18CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Y.-C. Hsieh
    • 1
  • H. Yano
    • 2
  • M. Nogi
    • 2
  • S. J. Eichhorn
    • 1
    Email author
  1. 1.Materials Science Centre, School of MaterialsUniversity of ManchesterManchesterUK
  2. 2.Research Institute for Sustainable HumanosphereKyoto UniversityUjiJapan

Personalised recommendations