, Volume 15, Issue 3, pp 453–463 | Cite as

Purification and characterization of exo-type cellouronate lyase

  • Naotake Konno
  • Naoto Habu
  • Natsuko Iihashi
  • Akira Isogai


A bacterial strain, Brevundimonas sp. SH203, has an ability to degrade cellouronate, β-(1→4)-linked polyglucuronic acid sodium salt, which is artificially prepared from regenerated cellulose by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation. In a previous paper, an endo-type cellouronate lyase (CUL-I) has been isolated from the strain. In this paper, we purified another cellouronate lyase, CUL-II, from cell-free extracts of Brevundimonas sp. SH203. CUL-II was a monomeric protein with a molecular mass of 56 kDa by size exclusion chromatography and 62 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and most active at pH 7.5. CUL-II formed monomers in a small quantity from cellouronate without forming any intermediate oligomers, whereas it degraded C4′–C5′ unsaturated cellouronate dimer more easily. Thus, CUL-II behaves as an exo-type lyase in degradation of cellouronate. When CUL-I and CUL-II were simultaneously treated to cellouronate, it was degraded to monomers more efficiently than treatment with one enzyme alone, CUL-I or CUL-II. Hence, cellouronate is synergistically degraded to monomers by Brevundimonas sp. SH203 by endo- and exo-type lyases, CUL-I and CUL-II, respectively.


Cellouronate TEMPO Biodegradation Lyase Glucuronan 



2,2,6,6-tetramethylpiperidine-1-oxyl radical


Sodium dodecyl sulfate-polyacrylamide gel electrophoresis


Size-exclusion chromatography equipped with a multi-angle laser light scattering detector


Cellouronate lyase


Mixture of 3,3-dimethylglutaric acid, tris(hydroxyethyl)aminomethane and 2-amino-2-methyl-1,3-propanediol


Thin-layer chromatography


2-Thiobarbituric acid



This research has been supported by Grant-in-Aids for Scientific Research (Grant number 18380102 and 17658075) from the Japan Society for the Promotion of Science (JSPS) and Ministry of Education, Culture, Sports, Science and Technology (MEXT), respectively.


  1. Benten JAE, Kester HCM, Pařenicová L, Visser J (2000) Characterization of Aspergillus niger pectate lyase A. Biochemistry 39:15563–15569CrossRefGoogle Scholar
  2. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  3. Chang PS, Robyt JFJ (1996) Oxidation of primary alcohol groups of naturally occurring polysaccharides with 2,2,6,6,-tetramethyl-1-piperidine oxoammonium ion. Carbohydr Chem 15:819–830CrossRefGoogle Scholar
  4. Da Costa A, Michaud P, Petit E, Heyraud A, Colin-Morel P, Courtois B, Courtois J (2001) Purification and properties of a glucuronan lyase from Sinorhizobium meliloti M5N1CS (NCIMB 40472). Appl Environ Microbiol 67:5197–5203CrossRefGoogle Scholar
  5. Da Costa A, Michaud P, Heyraud A, Colin-Morel P, Courtois B, Courtois J (2003) Acetyl substitution of glucuronan influences glucuronan cleavage by GlyA from Shinorhizobium meliloti M5N1CS (NCIMB 40472). Carbohydr Polym 51:223–228CrossRefGoogle Scholar
  6. Delattre C, Michaud P, Lion JM, Courtois B, Courtois J (2005) Production of glucuronan oligosaccharides using a new glucuronan lyase activity from a Trichoderma sp. strain. J Biotechnol 118:448–457CrossRefGoogle Scholar
  7. Delattre C, Michaud P, Keller C, Elboutachfaiti R, Bevwn L, Courtois B, Courtois J (2006a) Purification and characterization of novel glucuronan lyase from Trichoderma sp. GL2. Appl Microbiol Biotechnol 70:437–443CrossRefGoogle Scholar
  8. Delattre C, Michaud P, Elboutachfaiti R, Courtois B, Courtois J (2006b) Production of oligocellouronates by biodegradation of oxidized cellulose. Cellulose 13:63–71CrossRefGoogle Scholar
  9. de Nooy AEJ, Besemer AC, Bekkum H (1995) Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans. Carbohydr Res 269:89–98CrossRefGoogle Scholar
  10. Hashimoto W, Miki H, Tsuchiya N, Nankai H, Murata K (1998) Xanthan lyase of Bacillus sp. strain GL1 liberates pyruvylated mannose from xanthan side chains. Appl Environ Microbiol 64:3765–3768Google Scholar
  11. Hashimoto W, Miyake O, Momma K, Kawai S, Murata K (2000) Molecular identification of oligoalginate lyase of Sphingomonas sp. strain A1 as one of the enzymes required for complete depolymerization of alginate. J Bacteriol 182:4572–4577CrossRefGoogle Scholar
  12. Hashimoto W, Miki H, Tsuchiya N, Nankai H, Murata K (2001) Polysaccharide lyase: molecular cloning, sequencing, and overexpression of the xanthan lyase gene of Bacillus sp. strain GL1. Appl Environ Microbiol 67:713–720CrossRefGoogle Scholar
  13. Heyraud A, Courtois J, Dantas L, Colin-Morel R, Courtois B (1993) Structural characterization and rheological properties of an extracellular glucuronan produced by a Rhizobium meliloti M5N1 mutant strain. Carbohydr Res 240:71–78CrossRefGoogle Scholar
  14. Isogai A, Kato Y (1998) Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation. Cellulose 5:153–164CrossRefGoogle Scholar
  15. Kato Y, Habu N, Yamaguchi J, Kobayashi Y, Shibata I, Isogai A, Samejima M (2002) Biodegradation of β-1,4-linked polyglucuronic acid (cellouronic acid). Cellulose 9:75–81CrossRefGoogle Scholar
  16. Kato Y, Matsuo R, Isogai A (2003) Oxidation process of water-soluble starch in TEMPO-mediated system. Carbohydr Polym 51:69–75CrossRefGoogle Scholar
  17. Kato Y, Kaminaga J, Matsuo R, Isogai A (2004) TEMPO-mediated oxidation of chitin, regenerated chitin and N-acetylated chitosan. Carbohydr Polym 58:421–426CrossRefGoogle Scholar
  18. Kato Y, Kaminaga J, Matsuo R, Isogai A (2005) Oxygen permeability and biodegradability of polyuronic acids prepared from polysaccharides by TEMPO-mediated oxidation. J Polym Environ 13:261–266CrossRefGoogle Scholar
  19. Klug-Santner BG, Schnitzhofer W, Vršanská M, Weber J, Agarwal PB, Nierstrasz VA, Guebitz GMJ (2006) Purification and characterization of a new bioscouring pectate lyase from Bacillus pumilus BK2. Biotechnol 121:390–401CrossRefGoogle Scholar
  20. Kluskens LD, Van Alebeek GJWM, Walther J, Voragen AGJ, de Vos WM, van der Oost J (2005) Characterization and mode of action of an exopolygalacturonase from the hyperthermophilic bacterium Thermotoga maritima. FEBS J 272:5464–5473CrossRefGoogle Scholar
  21. Konno N, Habu N, Maeda I, Azuma N, Isogai A (2006) Cellouronate (β-1,4-linked polyglucuronate) lyase from Brevundimonas sp. SH203: purification and characterization. Carbohydr Polym 64:589–596CrossRefGoogle Scholar
  22. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefGoogle Scholar
  23. Ochiai A, Hashimoto W, Murata K (2006) A biosystem for alginate metabolism in Agrobacterium tumefaciens strain C58: molecular identification of Atu3025 as an exotype family PL-15 alginate lyase. Res Microbiol 157:642–649CrossRefGoogle Scholar
  24. Oettl M, Hoechstetter J, Asen I, Bernhardt G, Buschauer A (2003) Comparative characterization of bovine testicular hyaluronidase and a hyaluronate lyase from Streptococcus agalactiae in pharmaceutical preparations. Eur J Pharm Sci 18:267–277CrossRefGoogle Scholar
  25. Payasi A, Misra PC, Sanwal GG (2006) Purification and characterization of pectate lyase from banana (Musa acuminata) fruits. Phytochemistry 67:861–869CrossRefGoogle Scholar
  26. Pissavin C, Robert-Baudouy J, Hugouvieux-Cotte-Pattat N (1998) Biochemical characterization of the pectate lyase PelZ of Erwinia chrysanthemi 3937. Biochim Biophys Acta 1383:188–196Google Scholar
  27. Ponnuraj K, Jedrzejas MJ (2000) Mechanism of hyaluronan binding and degradation: structure of Streptococcus pneumoniae hyaluronate lyase in complex with hyaluronic acid disaccharide at 1.7 Å resolution. J Mol Biol 299:885–895CrossRefGoogle Scholar
  28. Rehm BHA (1998) Alginate lyase from Pseudomonas aeruginosa CF1/M1 prefers the hexameric oligomannuronate as substrate. FEMS Microbiol Lett 165:175–180CrossRefGoogle Scholar
  29. Shevchik VE, Kester HCM, Benen JAE, Visser J, Robert-Baudouy J, Hugouvieux-Cotte-Pattat N (1999a) Characterization of the exopolygalacturonate lyase PelX of Erwinia chrysanthemi 3937. J Bacteriol 181:1652–1663Google Scholar
  30. Shevchik VE, Condemine G, Robert-Baudouy J, Hugouvieux-Cotte-Pattat N (1999b) The exopolygalacturonate lyase PelW and the oligogalacturonate lyase Ogl, two cytoplasmic enzymes of pectin catabolism in Erwinia chrysanthemi 3937. J Bacteriol 181:3912–3919Google Scholar
  31. Shibata I, Isogai A (2003) Depolymerization of cellouronic acid during TEMPO-mediated oxidation. Cellulose 10:151–158CrossRefGoogle Scholar
  32. Shibata I, Yanagisawa M, Saito T, Isogai A (2006) SEC-MALS analysis of cellouronic acid prepared from regenerated cellulose by TEMPO-mediated oxidation. Cellulose 13:73–80CrossRefGoogle Scholar
  33. Suzuki H, Suzuki K, Inoue A, Ojima T (2006) A novel oligoalginate lyase from abalone, Haliotis discus hannai, that releases disaccharide from alginate polymer in an exolytic manner. Carbohydr Res 341:1809–1819CrossRefGoogle Scholar
  34. Weissbach A, Hurwitz J (1958) The formation of 2-keto-3-deoxyheptonic acid in extracts of Escherichia coli B. J Biol Chem 234:705–709Google Scholar
  35. Yoon HJ, Hashimoto W, Miyake O, Okamoto M, Miyake B, Murata K (2000) Overexpression in Escherichia coli, purification, and characterization of Sphingomonas sp. A1 alginate lyases. Protein Expr Purif 19:84–90CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Naotake Konno
    • 1
  • Naoto Habu
    • 2
  • Natsuko Iihashi
    • 2
  • Akira Isogai
    • 1
  1. 1.Graduate School of Agricultural and Life SciencesThe University of TokyoBunkyo-kuJapan
  2. 2.Department of Bioproductive ScienceUtsunomiya UniversityUtsunomiyaJapan

Personalised recommendations