Cellulose

, Volume 15, Issue 3, pp 453–463 | Cite as

Purification and characterization of exo-type cellouronate lyase

  • Naotake Konno
  • Naoto Habu
  • Natsuko Iihashi
  • Akira Isogai
Article

Abstract

A bacterial strain, Brevundimonas sp. SH203, has an ability to degrade cellouronate, β-(1→4)-linked polyglucuronic acid sodium salt, which is artificially prepared from regenerated cellulose by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation. In a previous paper, an endo-type cellouronate lyase (CUL-I) has been isolated from the strain. In this paper, we purified another cellouronate lyase, CUL-II, from cell-free extracts of Brevundimonas sp. SH203. CUL-II was a monomeric protein with a molecular mass of 56 kDa by size exclusion chromatography and 62 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and most active at pH 7.5. CUL-II formed monomers in a small quantity from cellouronate without forming any intermediate oligomers, whereas it degraded C4′–C5′ unsaturated cellouronate dimer more easily. Thus, CUL-II behaves as an exo-type lyase in degradation of cellouronate. When CUL-I and CUL-II were simultaneously treated to cellouronate, it was degraded to monomers more efficiently than treatment with one enzyme alone, CUL-I or CUL-II. Hence, cellouronate is synergistically degraded to monomers by Brevundimonas sp. SH203 by endo- and exo-type lyases, CUL-I and CUL-II, respectively.

Keywords

Cellouronate TEMPO Biodegradation Lyase Glucuronan 

Abbreviations

TEMPO

2,2,6,6-tetramethylpiperidine-1-oxyl radical

SDS-PAGE

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

SEC-MALLS

Size-exclusion chromatography equipped with a multi-angle laser light scattering detector

CUL

Cellouronate lyase

GTA

Mixture of 3,3-dimethylglutaric acid, tris(hydroxyethyl)aminomethane and 2-amino-2-methyl-1,3-propanediol

TLC

Thin-layer chromatography

TBA

2-Thiobarbituric acid

References

  1. Benten JAE, Kester HCM, Pařenicová L, Visser J (2000) Characterization of Aspergillus niger pectate lyase A. Biochemistry 39:15563–15569CrossRefGoogle Scholar
  2. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  3. Chang PS, Robyt JFJ (1996) Oxidation of primary alcohol groups of naturally occurring polysaccharides with 2,2,6,6,-tetramethyl-1-piperidine oxoammonium ion. Carbohydr Chem 15:819–830CrossRefGoogle Scholar
  4. Da Costa A, Michaud P, Petit E, Heyraud A, Colin-Morel P, Courtois B, Courtois J (2001) Purification and properties of a glucuronan lyase from Sinorhizobium meliloti M5N1CS (NCIMB 40472). Appl Environ Microbiol 67:5197–5203CrossRefGoogle Scholar
  5. Da Costa A, Michaud P, Heyraud A, Colin-Morel P, Courtois B, Courtois J (2003) Acetyl substitution of glucuronan influences glucuronan cleavage by GlyA from Shinorhizobium meliloti M5N1CS (NCIMB 40472). Carbohydr Polym 51:223–228CrossRefGoogle Scholar
  6. Delattre C, Michaud P, Lion JM, Courtois B, Courtois J (2005) Production of glucuronan oligosaccharides using a new glucuronan lyase activity from a Trichoderma sp. strain. J Biotechnol 118:448–457CrossRefGoogle Scholar
  7. Delattre C, Michaud P, Keller C, Elboutachfaiti R, Bevwn L, Courtois B, Courtois J (2006a) Purification and characterization of novel glucuronan lyase from Trichoderma sp. GL2. Appl Microbiol Biotechnol 70:437–443CrossRefGoogle Scholar
  8. Delattre C, Michaud P, Elboutachfaiti R, Courtois B, Courtois J (2006b) Production of oligocellouronates by biodegradation of oxidized cellulose. Cellulose 13:63–71CrossRefGoogle Scholar
  9. de Nooy AEJ, Besemer AC, Bekkum H (1995) Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans. Carbohydr Res 269:89–98CrossRefGoogle Scholar
  10. Hashimoto W, Miki H, Tsuchiya N, Nankai H, Murata K (1998) Xanthan lyase of Bacillus sp. strain GL1 liberates pyruvylated mannose from xanthan side chains. Appl Environ Microbiol 64:3765–3768Google Scholar
  11. Hashimoto W, Miyake O, Momma K, Kawai S, Murata K (2000) Molecular identification of oligoalginate lyase of Sphingomonas sp. strain A1 as one of the enzymes required for complete depolymerization of alginate. J Bacteriol 182:4572–4577CrossRefGoogle Scholar
  12. Hashimoto W, Miki H, Tsuchiya N, Nankai H, Murata K (2001) Polysaccharide lyase: molecular cloning, sequencing, and overexpression of the xanthan lyase gene of Bacillus sp. strain GL1. Appl Environ Microbiol 67:713–720CrossRefGoogle Scholar
  13. Heyraud A, Courtois J, Dantas L, Colin-Morel R, Courtois B (1993) Structural characterization and rheological properties of an extracellular glucuronan produced by a Rhizobium meliloti M5N1 mutant strain. Carbohydr Res 240:71–78CrossRefGoogle Scholar
  14. Isogai A, Kato Y (1998) Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation. Cellulose 5:153–164CrossRefGoogle Scholar
  15. Kato Y, Habu N, Yamaguchi J, Kobayashi Y, Shibata I, Isogai A, Samejima M (2002) Biodegradation of β-1,4-linked polyglucuronic acid (cellouronic acid). Cellulose 9:75–81CrossRefGoogle Scholar
  16. Kato Y, Matsuo R, Isogai A (2003) Oxidation process of water-soluble starch in TEMPO-mediated system. Carbohydr Polym 51:69–75CrossRefGoogle Scholar
  17. Kato Y, Kaminaga J, Matsuo R, Isogai A (2004) TEMPO-mediated oxidation of chitin, regenerated chitin and N-acetylated chitosan. Carbohydr Polym 58:421–426CrossRefGoogle Scholar
  18. Kato Y, Kaminaga J, Matsuo R, Isogai A (2005) Oxygen permeability and biodegradability of polyuronic acids prepared from polysaccharides by TEMPO-mediated oxidation. J Polym Environ 13:261–266CrossRefGoogle Scholar
  19. Klug-Santner BG, Schnitzhofer W, Vršanská M, Weber J, Agarwal PB, Nierstrasz VA, Guebitz GMJ (2006) Purification and characterization of a new bioscouring pectate lyase from Bacillus pumilus BK2. Biotechnol 121:390–401CrossRefGoogle Scholar
  20. Kluskens LD, Van Alebeek GJWM, Walther J, Voragen AGJ, de Vos WM, van der Oost J (2005) Characterization and mode of action of an exopolygalacturonase from the hyperthermophilic bacterium Thermotoga maritima. FEBS J 272:5464–5473CrossRefGoogle Scholar
  21. Konno N, Habu N, Maeda I, Azuma N, Isogai A (2006) Cellouronate (β-1,4-linked polyglucuronate) lyase from Brevundimonas sp. SH203: purification and characterization. Carbohydr Polym 64:589–596CrossRefGoogle Scholar
  22. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefGoogle Scholar
  23. Ochiai A, Hashimoto W, Murata K (2006) A biosystem for alginate metabolism in Agrobacterium tumefaciens strain C58: molecular identification of Atu3025 as an exotype family PL-15 alginate lyase. Res Microbiol 157:642–649CrossRefGoogle Scholar
  24. Oettl M, Hoechstetter J, Asen I, Bernhardt G, Buschauer A (2003) Comparative characterization of bovine testicular hyaluronidase and a hyaluronate lyase from Streptococcus agalactiae in pharmaceutical preparations. Eur J Pharm Sci 18:267–277CrossRefGoogle Scholar
  25. Payasi A, Misra PC, Sanwal GG (2006) Purification and characterization of pectate lyase from banana (Musa acuminata) fruits. Phytochemistry 67:861–869CrossRefGoogle Scholar
  26. Pissavin C, Robert-Baudouy J, Hugouvieux-Cotte-Pattat N (1998) Biochemical characterization of the pectate lyase PelZ of Erwinia chrysanthemi 3937. Biochim Biophys Acta 1383:188–196Google Scholar
  27. Ponnuraj K, Jedrzejas MJ (2000) Mechanism of hyaluronan binding and degradation: structure of Streptococcus pneumoniae hyaluronate lyase in complex with hyaluronic acid disaccharide at 1.7 Å resolution. J Mol Biol 299:885–895CrossRefGoogle Scholar
  28. Rehm BHA (1998) Alginate lyase from Pseudomonas aeruginosa CF1/M1 prefers the hexameric oligomannuronate as substrate. FEMS Microbiol Lett 165:175–180CrossRefGoogle Scholar
  29. Shevchik VE, Kester HCM, Benen JAE, Visser J, Robert-Baudouy J, Hugouvieux-Cotte-Pattat N (1999a) Characterization of the exopolygalacturonate lyase PelX of Erwinia chrysanthemi 3937. J Bacteriol 181:1652–1663Google Scholar
  30. Shevchik VE, Condemine G, Robert-Baudouy J, Hugouvieux-Cotte-Pattat N (1999b) The exopolygalacturonate lyase PelW and the oligogalacturonate lyase Ogl, two cytoplasmic enzymes of pectin catabolism in Erwinia chrysanthemi 3937. J Bacteriol 181:3912–3919Google Scholar
  31. Shibata I, Isogai A (2003) Depolymerization of cellouronic acid during TEMPO-mediated oxidation. Cellulose 10:151–158CrossRefGoogle Scholar
  32. Shibata I, Yanagisawa M, Saito T, Isogai A (2006) SEC-MALS analysis of cellouronic acid prepared from regenerated cellulose by TEMPO-mediated oxidation. Cellulose 13:73–80CrossRefGoogle Scholar
  33. Suzuki H, Suzuki K, Inoue A, Ojima T (2006) A novel oligoalginate lyase from abalone, Haliotis discus hannai, that releases disaccharide from alginate polymer in an exolytic manner. Carbohydr Res 341:1809–1819CrossRefGoogle Scholar
  34. Weissbach A, Hurwitz J (1958) The formation of 2-keto-3-deoxyheptonic acid in extracts of Escherichia coli B. J Biol Chem 234:705–709Google Scholar
  35. Yoon HJ, Hashimoto W, Miyake O, Okamoto M, Miyake B, Murata K (2000) Overexpression in Escherichia coli, purification, and characterization of Sphingomonas sp. A1 alginate lyases. Protein Expr Purif 19:84–90CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Naotake Konno
    • 1
  • Naoto Habu
    • 2
  • Natsuko Iihashi
    • 2
  • Akira Isogai
    • 1
  1. 1.Graduate School of Agricultural and Life SciencesThe University of TokyoBunkyo-kuJapan
  2. 2.Department of Bioproductive ScienceUtsunomiya UniversityUtsunomiyaJapan

Personalised recommendations