Cellulose

, 15:489

Oxidation and sulfonation of cellulosics

  • Jianguo Zhang
  • Nan Jiang
  • Zheng Dang
  • Thomas J. Elder
  • Arthur J. Ragauskas
Article

Abstract

Bleached hardwood (HW) kraft pulp and derived nanocellulosic structures were modified by a periodate oxidation followed by treatment with sodium bisulfite to yield the corresponding C2/3 sulfonates. The impact of this oxidative–reductive protocol on the chemical and physical properties of cellulose was evaluated by determining physical dimensions, functional groups, and their water absorbency properties. It was found that the water absorbency of cellulosic material can be enhanced by 8.0–199.0% with this oxidation/sulfonation protocol. Distinct differences were observed between sulfonated pulp fibers and nanocellulosic structures, with the latter exhibiting relatively higher water retention values (WRV).

Keywords

Cellulose Nanostructures Periodate oxidation Sulfonation Water retention 

References

  1. Abdelmouleh M, Boufi S, Ben Salah A, Belgacem MN, Gandini A (2002) Interaction of silane coupling agents with cellulose. Langmuir 18(8):3203–3208CrossRefGoogle Scholar
  2. Calvini P, Conio G, Princi E, Vicini S, Pedemonte E (2006) Viscometric determination of dialdehyde content in periodate oxycellulose. Part II. Topochemistry of oxidation. Cellulose 13(5):571–579CrossRefGoogle Scholar
  3. Eichhorn SJ, Baillie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufresne A, Entwistle KM, Herrera-Franco PJ, Escamilla GC, Groom L, Hughes M, Hill C, Rials TG, Wild PM (2001) Current international research into cellulosic fibers and composites. J Mater Sci 36(9):2107–2131CrossRefGoogle Scholar
  4. Gurdag G, Guclu G, Ozgumus S (2001) Graft copolymerization of acrylic acid onto cellulose: effects of pretreatments and crosslinking agent. J Appl Polym Sci 80(12):2267–2272CrossRefGoogle Scholar
  5. Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13(6):679–687CrossRefGoogle Scholar
  6. Huda MS, Drzal LT, Misra M, Mohanty AK (2006) Wood-fiber-reinforced poly(lactic acid) composites: evaluation of the physicomechanical and morphological properties. J Appl Polym Sci 102(5):4856–4869CrossRefGoogle Scholar
  7. Kim U, Kuga S (2002) Functionalization of cellulose by periodate oxidation. Cell Commun 9(2):69–75Google Scholar
  8. Kim U, Shigenori K (1999) Modification of cellulose column packing by periodate oxidation. Chromatography 20(4):322–323Google Scholar
  9. Kim U, Kuga S, Wada M, Okano T, Kondo T (2000) Periodate oxidation of crystalline. Cellulose 1(3):488–492Google Scholar
  10. Kim U, Wada M, Kuga S (2004) Solubilization of dialdehyde cellulose by hot water. Carbohydr Polym 56(1):7–10CrossRefGoogle Scholar
  11. Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393CrossRefGoogle Scholar
  12. Kvien I, Tanem BS, Oksman K (2005) Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. Biomacromolecules 6(6):3160–3165CrossRefGoogle Scholar
  13. Lloyd JA, Horne CW (1993) The determination of fiber charge and acidic groups of radiata pine pulps. Nord Pulp Paper Res J 8:48–52CrossRefGoogle Scholar
  14. Margutti S, Vicini S, Proietti N, Capitani D, Conio G, Pedemonte E, Segre AL (2002) Physical–chemical characterization of acrylic polymers grafted on cellulose. Polymer 43(23):6183–6194CrossRefGoogle Scholar
  15. Nelson K, Deng Y (2006) The shape dependence of core-shell and hollow titania nanoparticles on coating thickness during layer-by-layer and sol–gel synthesis. Nanotechnology 17:3219–3225CrossRefGoogle Scholar
  16. Pu Y, Zhang J, Elder T, Deng Y, Gatenholm P, Ragauskas AJ (2007) Investigation into nanocellulosics versus acacia reinforced acrylic films. Compos Part B-Eng 38(3):360–366CrossRefGoogle Scholar
  17. Pu Y, Ziemer C, Ragauskas AJ (2006) CP/MAS 13C NMR analysis of cellulase treated bleached softwood kraft pulp. Carbohyd Res 341(5):591–597CrossRefGoogle Scholar
  18. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311(5760):484–489CrossRefGoogle Scholar
  19. Roman M, Winter WT (2006) Cellulose nanocrystals for thermoplastic reinforcement: effect of filler surface chemistry on composite properties. ACS Sympos Ser 938:99–113CrossRefGoogle Scholar
  20. Röhrling J, Potthast A, Rosenau T, Lange T, Borgards A, Sixta H, Kosma P (2002) A novel method for the determination of carbonyl groups in cellulosics by fluorescence labeling. 2. Validation and applications. Biomacromolecules 3(5):969–975CrossRefGoogle Scholar
  21. Saito T, Isogai A (2005) A novel method to improve wet strength of paper. Tappi J 4(3):3–8Google Scholar
  22. Saito T, Okita Y, Nge TT, Sugiyama J, Isogai A (2006) TEMPO-mediated oxidation of native cellulose: microscopic analysis of fibrous fractions in the oxidized products. Carbohydr Polym 65(4):435–440CrossRefGoogle Scholar
  23. Saito T, Shibata I, Isogai A, Suguri N, Sumikawa N (2005) Distribution of carboxylate groups introduced into cotton linters by the TEMPO-mediated oxidation. Carbohydr Polym 61(4):414–419CrossRefGoogle Scholar
  24. Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626CrossRefGoogle Scholar
  25. Shet RT, Wallajapet PRR (1997) Manufacture of sulfonated cellulose with improved absorbent properties. US 5703225Google Scholar
  26. Toriz G, Gatenholm P, Seiler BD, Tindall D (2005) Cellulose fiber-reinforced cellulose esters: biocomposite for the future. Nat Fibers Biopolym Biocompos 617–638Google Scholar
  27. Varma AJ, Chavan VB, Rajimohanan PR, Ganapathy S (1997) Some observations on the high-resolution solid-state CP-MAS 13C NMR spectra of periodate-oxidised cellulose. Polym Degrad Stab 58:257–260CrossRefGoogle Scholar
  28. Wack H, Ulbricht M (2007) Method and model for the analysis of gel-blocking effects during the swelling of polymeric hydrogels. Ind Eng Chem Res 46(1):359–364CrossRefGoogle Scholar
  29. Waring MJ, Parsons D (2001) Physico-chemical characterization of carboxymethylated spun cellulose fibers. Biomaterials 22(9):903–912CrossRefGoogle Scholar
  30. Zhang J, Elder T, Pu Y, Ragauskas AJ (2007) Facile synthesis of spherical nanocellulose. Carbohyd Polym 69(3):607–611CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Jianguo Zhang
    • 1
  • Nan Jiang
    • 1
  • Zheng Dang
    • 2
  • Thomas J. Elder
    • 3
  • Arthur J. Ragauskas
    • 1
  1. 1.School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaUSA
  2. 2.School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaUSA
  3. 3.USDA-Forest Service, South Research StationPinevilleUSA

Personalised recommendations