, Volume 15, Issue 1, pp 59–66 | Cite as

Dissolution and forming of cellulose with ionic liquids

  • Birgit Kosan
  • Christoph Michels
  • Frank Meister


The dissolution of cellulose in different ionic liquids will be described as a very recent subject for a direct dissolving process, which was used to prepare regenerated cellulose fibres. The preparation of the dopes was arranged starting from slurry of cellulose in the aqueous ionic liquid by removing the water at elevated temperature, vacuum and high shearing rates. As ionic liquids, the 1-N-Butyl-3-methylimidazolium chloride, the 1-Ethyl-3-methylimidazolium chloride, the 1-N-Butyl-2,3-dimethylimidazolium chloride, the 1-N-Butyl-3-methylimidazolium acetate and the 1-Ethyl-3-methylimidazolium acetate were investigated. The cellulose solutions in ionic liquids were characterised by means of light microscopy, cone-plate rheometry and particle analysis. In addition these results were compared with cellulose solutions in N-methyl-morpholine-N-oxide monohydrate. Finally the cellulose dopes were shaped by a dry-wet spinning process to manufacture cellulose fibres. The properties of the resulted fibre had been determined and will be discussed.


Cellulose dissolution Cellulose fibre Dry-wet spinning process Ionic liquid Solution state 



These works were financially supported by the German Federal Ministry of Economics and Technology (BMWA No. IW050050).

Furthermore the authors thank A. Stark (Institute for Technical and Environmental Chemistry, Jena) for the preparation of 1-N-Butyl-2,3-dimethylimidazolium chloride.


  1. Antonietti M, Kuang D, Smarsly B, Zhou Y (2004) Ionische Flüssigkeiten für die Synthese funktioneller Nanopartikel und anderer anorganischer Nanostrukturen. Angew Chem 116:5096–5100CrossRefGoogle Scholar
  2. Barthel S, Heinze T (2006) Acylation and carbanilation of cellulose in ionic liquids. Green Chem 8:301–306CrossRefGoogle Scholar
  3. Earle M, Seddon KR (2000) Ionic liquids. Green solvents for the future. Pure Appl Chem 72(7):1391–1398CrossRefGoogle Scholar
  4. Heinze Th, Schwikal K, Barthel S (2005) Ionic liquids as reaction medium in cellulose functionalization. Macromol Biosci 5(6):520–525CrossRefGoogle Scholar
  5. Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Determination of the DP of cellulose in Cuam solution. Comprehensive cellulose chemistry, vol 1. Wiley-VCH, pp 234–235Google Scholar
  6. Kosan B, Michels Ch (1999) Particle analysis by laser diffraction––application and restrictions in the lyocell process. Chemical Fibers Int 49:50–54Google Scholar
  7. Laus G, Bentivoglio G, Schottenberger H, Kahlenberg V, Kopacka H, Röder T, Sixta H (2005) Ionic liquids: current developments, potential and drawbacks for industrial applications. Lenzinger Berichte 84:71–85Google Scholar
  8. Michels Ch, Kosan B (2000) Lyocell process––material and technological restrictions. Chemical Fibers Int 50:556–561Google Scholar
  9. Michels Ch, Kosan B (2005) Contribution to the dissolution state of cellulose and cellulose derivatives. Lenzinger Berichte 84:62–70Google Scholar
  10. Schubert TJS (2005) Ionische Flüssigkeiten – eine Querschnittstechnologie? Nachrichten aus der Chemie 53:1222–1226CrossRefGoogle Scholar
  11. Swatlowski RP, Rogers RD, Holbrey JD (2003) Dissolution and processing of cellulose using ionic liquids. WO 03/029329Google Scholar
  12. Wasserscheid P, Keim W (2000) Ionische Flüssigkeiten – neue“Lösungen“ für die Übergangsmetallkatalyse. Angew Chem 112:3926–3945CrossRefGoogle Scholar
  13. Zhu S et al (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem. 8:325–327CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Birgit Kosan
    • 1
  • Christoph Michels
    • 1
  • Frank Meister
    • 1
  1. 1.Thüringisches Institut für Textil- und Kunststoff-Forschung e.V.RudolstadtGermany

Personalised recommendations