Cellulose

, Volume 14, Issue 5, pp 419–425 | Cite as

Sugar beet cellulose nanofibril-reinforced composites

  • Johannes Leitner
  • Barbara Hinterstoisser
  • Marnik Wastyn
  • Jozef Keckes
  • Wolfgang Gindl
Article

Abstract

Cellulose was isolated from sugar beet chips, a by-product of sugar production, by wet chemistry. Further processing of the cellulose with a high-pressure homogeniser led to the disruption of cell walls into nanofibrils. Cellulose sheets obtained by casting and slow evaporation of water showed higher strength and stiffness when homogenised cellulose was used compared to unhomogenised cellulose. These cellulose sheets showed significantly better mechanical performance than Kraft paper tested for reference. The addition of cellulose nanofibrils to a polyvinyl alcohol and a phenol-formaldehyde matrix, respectively, demonstrated excellent reinforcement properties. The best mechanical performance was achieved for a composite with a phenol-formaldehyde resin content of 10%, which showed a tensile strength of 127 MPa, a modulus of elasticity of 9.5 GPa, and an elongation at break of 2.9%.

Keywords

Cellulose composites Mechanical properties Nanofibrils Sugar beet cellulose 

References

  1. Azizi Samir MAS, Alloin F, Paillet M, Dufresne A (2004) Tangling effect in fibrillated cellulose reinforced nanocomposites. Macromolecules 37:4313–4316CrossRefGoogle Scholar
  2. Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274CrossRefGoogle Scholar
  3. Bruce DM, Hobson RN, Farrent JW, Hepworth DG (2005) High-performance composites from low-cost plant primary cell walls. Comp A 36:1486–1493CrossRefGoogle Scholar
  4. Chawla KK (2001) Composite materials: science and engineering. Springer, New YorkGoogle Scholar
  5. Dinand E, Chanzy H, Vignon MR (1996) Parenchymal cell cellulose from sugar beet pulp: preparation and properties. Cellulose 3:183–188CrossRefGoogle Scholar
  6. Dinand E, Chanzy H, Vignon MR (1999) Suspensions of cellulose microfibrils from sugar beet pulp. Food Hydrocolloids 13:275–283CrossRefGoogle Scholar
  7. Dufresne A, Cavaille J-Y, Vignon MR (1997) Mechanical behaviour of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64:1185–1194CrossRefGoogle Scholar
  8. Dufresne A (2006) Comparing the mechanical properties of high performance polymer nanocomposites from biological sources. J Nanosci Nanotechnol 6:322–330Google Scholar
  9. Nishino T, Takano K, Nakamae K (1995) Elastic modulus of the crystalline regions of cellulose polymorphs. J Polym Sci B Polym Phys 33:1647–1651CrossRefGoogle Scholar
  10. Northolt MG, den Decker P, Picken SJ, Baltussen JJM, Schlatmann R (2005) The tensile strength of polymer fibres. Adv Polym Sci 178:1–108CrossRefGoogle Scholar
  11. Reddy N, Yang Y (2005) Biofibers from agricultural byproducts for industrial applications. Trends in Biotechnol 23:22–27CrossRefGoogle Scholar
  12. Zimmermann T, Pöhler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6:754–761CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Johannes Leitner
    • 1
  • Barbara Hinterstoisser
    • 1
  • Marnik Wastyn
    • 2
  • Jozef Keckes
    • 3
  • Wolfgang Gindl
    • 1
  1. 1.Department of Materials Science and Process EngineeringBOKU – University of Natural Resources and Applied Life SciencesViennaAustria
  2. 2.Zuckerforschung Tulln GmbHTullnAustria
  3. 3.Erich Schmid Institute of Materials ScienceUniversity of LeobenLeobenAustria

Personalised recommendations