Cellulose

, Volume 14, Issue 3, pp 257–268

The role of mild TEMPO–NaBr–NaClO oxidation on the wet adhesion of regenerated cellulose membranes with polyvinylamine

  • John-Louis DiFlavio
  • Robert Pelton
  • Marc Leduc
  • Simon Champ
  • Manfred Essig
  • Tomas Frechen
Original Paper

Abstract

X-ray Photoelectron Spectroscopy (XPS) was used to characterize the functional groups present on regenerated cellulose films after mild oxidation with TEMPO–NaBr–NaClO and the results were correlated with the adhesion forces holding together two wet cellulose films laminated with a thin (i.e. less than 10 mg/m2) layer of polyvinylamine (PVAm). There was no correlation between adhesion and carboxyl content, whereas wet adhesion was proportional to the total content of aldehyde and hemiacetal groups on the cellulose. It is proposed that aldehyde groups react with neighboring cellulose chains to form hemiacetals which serve as crosslinks strengthening the cellulose surface. The hemiacetals can also be attacked by primary amines to give imine and aminal covalent linkages to the PVAm adhesive layer.

Keywords

Oxidation TEMPO Wet adhesion XPS Aldehyde Hemiacetal 

References

  1. Beamson G, Briggs D (1992) High Resolution XPS of Organic Polymers. John Wiley & Sons, TorontoGoogle Scholar
  2. Beckwith ALJ (1970) Synthesis of amides. In: Zabicky J (ed) The chemistry of amides. Interscience, Toronto, pp 73–185Google Scholar
  3. Bragd PL, van Bekkum H, Besemer A C (2004) TEMPO-mediated oxidation of polysaccharides: survey of methods and applications. Top Catal 27(1–4):49–66CrossRefGoogle Scholar
  4. Chang PS, Robyt JF (1996) Oxidation of primary alcohol groups of naturally occurring polysaccharides with 2,2,6,6-tetramethyl−1-piperidine oxoammonium ion. J Carbohyd Chem 15(7):819–830Google Scholar
  5. Chen N, Hu SW, Pelton R (2002) Mechanisms of aldehyde-containing paper wet-strength resins. Ind Eng Chem Res 41(22):5366–5371CrossRefGoogle Scholar
  6. Cimecioglu A L, Thomaides JS (2003) Polysaccharide aldehydes prepared by oxidation method and used as strength additives in papermaking. National Starch and Chemical Company, US, 6586588, p. 7Google Scholar
  7. de Nooy AEJ, Besemer AC, Vanbekkum H (1994) Highly selective tempo-mediated oxidation of primary alcohol groups in polysaccharides. Recl Trav Chim Pays Bas J R N L Chem Soc 113(3):165–166Google Scholar
  8. de Nooy AEJ, Besemer AC, Vanbekkum H (1995) Selective oxidation of primary alcohols mediated by nitroxyl radical in aqueous-solution-kinetics and mechanism. Tetrahedron 51(29):8023–8032CrossRefGoogle Scholar
  9. de Nooy AEJ, Besemer AC, vanBekkum H, vanDijk J, Smit JAM (1996) TEMPO-mediated oxidation of pullulan and influence of ionic strength and linear charge density on the dimensions of the obtained polyelectrolyte chains. Macromolecules 29(20): 6541–6547CrossRefGoogle Scholar
  10. DiFlavio JL, Bertoia R, Pelton R, Leduc M (2005) The Mechanism of Polyvinylamine Wet-Strengthening. 13th Fundamental Research Symposium, FRC, Cambridge, UK, 1293–1316Google Scholar
  11. Dorris GM, Gray DG (1978) The surface analysis of paper and wood fibres by ESCA.I. Application to Cellulose Lignin. Cellulose Chem Tech 12–14Google Scholar
  12. Espy HH (1995) The mechanism of wet-strength development in paper: a review. Tappi J 78(4):90–99Google Scholar
  13. Espy HH, Rave TW (1988) The Mechanism of Wet-Strength Development by Alkaline-Curing Amino Polymer-Epichlorohydrin Resins. Tappi J 71(5):133–137Google Scholar
  14. Fras L, Johansson LS, Stenius P, Laine L, Stana-Kleinschek K, Ribitsch V. (2005) Analysis of the oxidation of cellulose fibres by titration and XPS. Colloids Surf A Physicochem Eng Asp 260(1–3):101–108CrossRefGoogle Scholar
  15. Geffroy C, Labeau MP, Wong K, Cabane B, Stuart MAC (2000) Kinetics of adsorption of polyvinylamine onto cellulose. Colloids Surf A Physicochem Eng Asp 172(1–3):47–56CrossRefGoogle Scholar
  16. Isogai A., Kato Y. (1998) Preparation of polyglucuronic acid from cellulose by TEMPO-mediated oxidation. Cellulose 5(3):153–164CrossRefGoogle Scholar
  17. Jansma RH, Begala AJ, Furman GS (1995) Strength resins for paper. Nalco Chemical Company, US, 5401810, p. 24Google Scholar
  18. Johansson LS, Campbell J, Koljonen K, Kleen M, Buchert J (2004) On surface distributions in natural cellulosic fibres. Surf Interface Anal 36(8):706–710CrossRefGoogle Scholar
  19. Kitaoka T, Isogai A, Onabe F. (1999) Chemical modification of pulp fibers by TEMPO-mediated oxidation. Nord Pulp Pap Res J 14(4): 279–284Google Scholar
  20. Kurosu K., Pelton R. (2004) Simple lysine-containing polypeptide and polyvinylamine adhesives for wet cellulose. J Pulp Pap Sci 30(8):228–232Google Scholar
  21. Li X., Pelton R. (2005) Enhancing wet cellulose adhesion with proteins. Ind Eng Chem Res 44(19):7398–7404CrossRefGoogle Scholar
  22. Lojewska J, Miskowiec P, Lojewski T, Proniewicz LM (2005) Cellulose oxidative and hydrolytic degradation: In situ FTIR approach. Polym Degrad Stab 88(3):512–520CrossRefGoogle Scholar
  23. McKenzie AW (1984) The structure and properties of paper: Part XXI The diffusion theory of adhesion applied to interfiber bonding. Appita 37(7):580–583Google Scholar
  24. Morawetz H, Otaki PS (1963) Kinetics and equilibria of amide formation in aqueous media. J Am Chem Soc 85:463–468CrossRefGoogle Scholar
  25. Niskanen K. 1998. Paper Physics. Fapet Oy, HelsinkiGoogle Scholar
  26. Pelton R, Hong J (2002) Some properties of newsprint impregnated with polyvinylamine. Tappi J 1(10):21–26Google Scholar
  27. Pelton R, Zhang J, Wagberg L, Rundlof M (2000) The role of surface polymer compability in the formation of fiber/fiber bonds in paper. Nord Pulp Pap Res J 15(5):400–406Google Scholar
  28. Perez DD, Montanari S, Vignon MR (2003) TEMPO-mediated oxidation of cellulose III. Biomacromolecules 4(5):1417–1425CrossRefGoogle Scholar
  29. Saito T, Isogai A (2005) A novel method to improve wet strength of paper. Tappi J 4(3):3–8Google Scholar
  30. Shibata I, Isogai A (2003) Depolymerization of cellouronic acid during TEMPO-mediated oxidation. Cellulose. 10(2):151–158CrossRefGoogle Scholar
  31. Solarek DB, Jobe PE, Tessler MM (1987) Polysaccharides containing acetal groups, their preparation from the corresponding acetals and use as paper additives. National Starch and Chemical Corporation, US, p 4675394 Google Scholar
  32. Sun B, Gu CJ, Ma JH, Liang BR (2005) Kinetic study on TEMPO-mediated selective oxidation of regenerated cellulose. Cellulose 12(1):59–66CrossRefGoogle Scholar
  33. Tahiri C Vignon MR (2000) TEMPO-oxidation of cellulose: Synthesis and characterisation of polyglucuronans. Cellulose 7(2):177–188CrossRefGoogle Scholar
  34. Tomihata K, Ikada Y (1997). Crosslinking of hyaluronic acid with glutaraldehyde. J Polym Sci APolym Chem 35(16):3553–3559CrossRefGoogle Scholar
  35. Varma AJ, Kokane SP, Pathak G, Pradhan SD (1997) Thermal behavior of galactomannan guar gum and its periodate oxidation products. Carbohyd Polym 32(2):111–114CrossRefGoogle Scholar
  36. Wagberg L, Bjorklund M (1993) On the mechanism behind wet strength development in papers containing wet strength resins. Nord Pulp Pap Res J. 8:53–58Google Scholar
  37. Xu GGZ, Yang CQX (2001) Application of glutaraldehyde and poly(vinyl alcohol) to improve paper strength. Tappi J.84(6):68–68Google Scholar
  38. Xu GGZ, Yang CQX, Deng YL (2002) Applications of bifunctional aldehydes to improve paper wet strength. J App Polym Sci. 83(12):2539–2547CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • John-Louis DiFlavio
    • 1
  • Robert Pelton
    • 1
  • Marc Leduc
    • 2
  • Simon Champ
    • 2
  • Manfred Essig
    • 2
  • Tomas Frechen
    • 2
  1. 1.Department of Chemical EngineeringMcMaster UniversityHamiltonCanada
  2. 2.BASF AktiengesellschaftLudwigshafenGermany

Personalised recommendations