, Volume 14, Issue 2, pp 115–127 | Cite as

Wetting behaviour, moisture up-take and electrokinetic properties of lignocellulosic fibres

  • Alexis Baltazar-y-Jimenez
  • Alexander Bismarck


The wetting and moisture up-take behaviour, as well as the electrokinetic properties of various lignocellulosic fibres were characterised. Knowledge of surface and water uptake properties of this kind of materials will help to tailor their potential use in different end user applications. The surface tension of the fibres was determined from wetting measurements using the capillary rise technique. The wetting data were used to determine the surface tension of the fibres. Our results show that the surface tension of the lignocellulosic fibres is a linear function of their cellulose content. Zeta-potential measurements were exploited to characterise the surface chemistry of the fibres. Measuring the zeta-potential as function of time enables the rapid assessment of the water up-take, i.e. the swelling behaviour of the fibres. The results obtained by the zeta potential measurements correlate, with the exception of flax, in a linear manner with the results obtained from conventional moisture uptake measurements. Even though all lignocellulosic fibres are very hydrophilic due to the presence of polar oxygen containing groups they have different grades of hydrophilicity, which is also reflected in the different water uptake capabilities measured.

The wetting, moisture uptake and electrokinetic properties of the lignocellulosic fibres are determined by the availability of the surface functional groups present, which is usually consequence of the processes used to separate, and extract the fibres from the plant (retting), as well as any further processing used to improve the fibre quality.


Moisture uptake Natural fibres Surface tension Wetting Zeta-potential 



Moisture content


Relative humidity


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



A. Baltazar-y-Jimenez gratefully acknowledges the Mexican Council of Science and Technology (CONACYT) for funding this research. The authors are grateful to Wigglesworth & Co. (UK), Hemcore Ltd. (UK), Heritage Arts & Crafts (the Philippines) and Lenzing Lyocell (Austria) for supplying the samples.


  1. Albert A., Serjeant E.P. (1984). Ionization constants of typical acids and bases. In: Hall C.a. (eds), The Determination of Ionization Constants: a Laboratory Manual. Chapman and Hall, New York, pp. 166–174Google Scholar
  2. Aranberri-Askargorta I., Lampke T., Bismarck A. (2003). Wetting behaviour of flax fibres as reinforcement for polypropylene. J. Colloid Interf. Sci. 263(2):580–589CrossRefGoogle Scholar
  3. Barl B., Biliaderis C.G., Murray E.D. (1986). Effect of chemical pretreatments on the thermal degradation of corn husk lignocellulosics. J. Agric Food Chem 34(6):1019–1024CrossRefGoogle Scholar
  4. Bedouet L., Denys E., Courtois B. and Courtois J. Changes in esterified pectins during development in the flax stems and leaves. Carbohyd. Polym. In press, Corrected ProofGoogle Scholar
  5. Bellmann C., Caspari A., Loan Doan T.T., Mäder E. (2004). Electrokinetic Properties of Natural Fibres. Environmental Electrokinetics, Pittsburgh, PA, pp. 1–14Google Scholar
  6. Bellmann C., Klinger C., Opfermann A., Bohme F., Adler H.-J.P. (2002). Evaluation of surface modification by electrokinetic measurements. Prog Org Coat. 44(2):93–98CrossRefGoogle Scholar
  7. Bismarck A., Aranberri-Askargorta I., Springer J., Lampke T., Wielage B., Stamboulis A., Shenderovich I., Limbach H.H. (2002). Surface characterization of flax, hemp and cellulose fibres; surface properties and the water uptake behaviour. Polym. Compos. 23(5):872–894CrossRefGoogle Scholar
  8. Bismarck A., Mishra S., Lampke T. (2005). Plant fibers as reinforcement for green composites. In: Mohanty A.K., Mirsa M., Drzal L.T. (eds), Natural Fibres, Biopolymers and their Composites. CRC Press, Boca Raton, pp. 37–108Google Scholar
  9. Bismarck A., Mohanty A.K., Aranberri-Askargorta I., Czapla S., Misra M., Hinrichsen G., Springer J. (2001). Surface characterization of natural fibres; surface properties and the water uptake behaviour of modified sisal and coir fibres. Green Chem 3(2):100–107CrossRefGoogle Scholar
  10. Bismarck A., Springer J., Mohanty A.K., Hinrichsen G., Khan M.A. (2000). Characterization of several modified jute fibers using zeta-potential measurements. Colloid Polym. Sci. 278(3):229–235CrossRefGoogle Scholar
  11. Bledzki A.K., Gassan J. (1996). Einfluß von haftvermittlern auf das feuchteverhalten naturfaservertärkter kunststoffe. Angew Makromol Chem 236(1):129–138CrossRefGoogle Scholar
  12. Bledzki A.K., Gassan J. (1999). Composites reinforced with cellulose based fibres. Prog. Polym. Sci. 24(2):221–274CrossRefGoogle Scholar
  13. Costa F.H.M.M., D’Almeida J.R.M. (1999). Effect of water absorption on the mechanical properties of sisal and jute fiber composites. Polym. Plast. Technol. Eng. 38(5):1081–1094Google Scholar
  14. Dodd R.B., Akin D.E. (2005). Recent developments in retting and measurement of fibre quality in natural fibres: Pro and Cons. In: Mohanty A.K., Mirsa M., Drzal L.T. (eds), Natural Fibres, Biopolymers and their Composites. CRC Press, Boca Raton, pp. 141–157Google Scholar
  15. Duvick D.N. (1952). Free amino acids in the developing endosperm of mazie. Am. J. Bot. 39(9):656–661CrossRefGoogle Scholar
  16. Fengel D., Wegener G. (1983). Influence of temperature. In: Fengel D., Wegener G. (eds), Wood: Chemistry, Ultra-Structure and Reactions. Walter de Gruyter, New York, pp. 319–344Google Scholar
  17. Fischer K., Topf W. (1988). Entwicklung objektiver Qualitätsfür Flachs Teil 2: Textiltechnologische Untersuchunge. Melliand Textilberichte. 12(Dez.):858–861Google Scholar
  18. Gusovius H.-J. and Müssig J. 1998. Der Einfluß von Ernteverfahren und Feldliegezeit auf die Faserqualität von Hanf. In: Proceedings of 5 Internationale Tagung, “Stoffliche Nutzung nachwachsender Rohstoffe”, Chemnitz, Germany, pp. 39–47Google Scholar
  19. Jacobasch H.J., Simon F., Werner C., Bellmann C. (1996). Determination of the zeta potential from streaming potential and streaming current measurements. Technisches Messen. 63(12):447–452Google Scholar
  20. Joffe R., Andersons J., Wallstrom L. (2003). Strength and adhesion characteristics of elementary flax fibres with different surface treatments. Composites Part A 34(7):603–612CrossRefGoogle Scholar
  21. Kanamaru K. (1960). Wasseraufnahme in ihrer Beziehung zur zeitlichen Erniedrigung des Z-Potentials von Fasernin Wasser. Kolloid-Z. 168(2):115–121CrossRefGoogle Scholar
  22. Kessler R.W., Blum A., Werner G. (1988). Entwichlung objektiver Qualitätskriterien für Flachs Teil 1: Chemische und morphologische Untersuchungen. Melliand Textilber 12. (Dez):854–857Google Scholar
  23. Kozlowski R. and Wladyka-Przybylak M. 2004. Uses of natural fibre reinforced plastics. In: Wallenberg F. and Weston N. (eds), Natural Fibres, Plastics and Composites. Kluwer Academic Publishers, USA, pp. 249–274Google Scholar
  24. Kuehn N., Jacobasch H.-J., Lunkenheimer K. (1986). Zum Zusammenhang zwischen demKontaktwinkel zwischen Wasser und festen Polymeren und ihrem zeta-Potential gegenüber wäßrigen Lösungen. Acta. Polym. 37(6):394–396CrossRefGoogle Scholar
  25. Madan G.L., Shrivastava S.K. (1977). Electrokinetic studies of cotton. Colloid Polym. Sci. 255(3):269–275CrossRefGoogle Scholar
  26. Morrison W.H. III, Archibald D.D., Sharma H.S., Akin D.E. (2000). Chemical and physical characterization of water- and dew-retted flax fibers. Ind. Crop. Prod. 12(1):39–46CrossRefGoogle Scholar
  27. Morvan C., Demarty M., Thellier M. (1979). Titration of isolated cell-walls of Lemna-Minor-L. Plant Physiol. 63(6):1117–1122CrossRefGoogle Scholar
  28. Munder F., Fürll C., Hempel H. (2005). Processsing of bast fibre plants for industrial application. In: Mohanty A.K., Mirsa M., Drzal L.T. (eds), Natural Fibres, Biopolymers and their Composites. CRC Press, Boca Raton, pp. 109–140Google Scholar
  29. Ribitsch V., Stana-Kleinscheck K. (1998). Characterizing textile fibre surfaces with streaming potential measurements. J. Text. Res. 68(10):701–707CrossRefGoogle Scholar
  30. Ribitsch V., Stana-Kleinschek K., Jeler S. (1996). The influence of classical and enzymatic treatment on the surface charge of cellulose fibres. Colloid Polym. Sci. 274(4):388–394CrossRefGoogle Scholar
  31. Ribitsch V., Stana-Kleinschek K., Kreze T., Strnad S. (2001). The significance of surface charge and structure on the accessibility of cellulose fibres. Macromol. Mater. Eng. 286(10):648–654CrossRefGoogle Scholar
  32. Rowell R.M., Han J.S., Roswell J. (2000). Characterization and factors effecting fiber properties. In: Frollini E., AL L., LHC M. (eds), Natural Polymers and Agrofibers Bases Composites. Embrapa Instrumentacao Agropecuaria, Sao Carlos-S.P., Brazil, pp. 115–134Google Scholar
  33. Rowell R.M. (2004). Chemical Modification. In: Burley J., Evans J., Youngquist J.A. (eds), Encyclopedia of forest sciences. Elsevier Academic Press, Oxford, pp. 1269–1274Google Scholar
  34. Shi S.Q., Gardner D.J. (2000). A new model to determine contact angles on swelling polymer particles by the column wicking method. J. Adhes. Sci. Technol. 14(2):301–314CrossRefGoogle Scholar
  35. Sreekala M.S., Thomas S. (2003). Effect of fibre surface modification on water-sorption characteristics of palm fibres. Compos. Sci. Technol. 63(6):861–869CrossRefGoogle Scholar
  36. Stamboulis A., Baillie C.A., Peijs T. (2001). Effects of environmental conditions on mechanical and physical properties of flax fibres. Composites Part A 32(8): 1105-1115CrossRefGoogle Scholar
  37. Stana-Kleinschek K., Kreze T., Ribitsch V., Strnad S. (2001). Reactivity and electrokinetical properties of different types of regenerated cellulose fibres. Colloid Surf. A-Physicochem. Eng. Asp. 195(1–3):275–284CrossRefGoogle Scholar
  38. Stana-Kleinschek K., Ribitsch V. (1998). Electrokinetic properties of processed cellulose fibres. Colloids Surfaces A 140(1/3):127–138CrossRefGoogle Scholar
  39. Tarchevsky I.A., Marchenko G.N. (1991). Cell wall composition. In: Backinowski L.V., Chlenov M.A. (eds), Cellulose: Biosynthesis and Structure. Springer, Berlin, pp. 9–31Google Scholar
  40. Tserki V., Zafeiropoulos N.E., Simon F., Panayiotou C. (2005). A study of the effect of acetylation and propionylation surface treatments on natural fibres. Composites A 36(8):1110–1118CrossRefGoogle Scholar
  41. Valadez-Gonzalez A., Cervantes-Uc J.M., Olayo R., Herrera-Franco P.J. (1999). Effect of fibre surface treatment on the fibre-matrix bond strength of natural fibre reinforced composites. Composites B 30(3):309–320CrossRefGoogle Scholar
  42. van de Ven T.G.M. (1999). Effect of fibre conductivity on zeta potential measurements of pulp fibres. J. Pulp. Pap. Sci. 25(7):243–245Google Scholar
  43. van Hazendonk J.M., van der Putten J.C., Keurentjes J.T.F., Prins A. (1993). A simple experimental method for the measurement of the surface tension of cellulosic fibres and its relation with chemical composition. Colloids Surfaces A 81:251–261CrossRefGoogle Scholar
  44. van Oss C.J. (1993). Acid-base interfacial interactions in aqueous media . Colliod Surfaces A 78:1–49CrossRefGoogle Scholar
  45. van Oss C.J. (2002). Use of the combined Lifshitz-van der Waals and Lewis acid-base approaches in determining the apolar and polar contributions to surface and interfacial tensions and free energies. J. Adhes. Sci. Technol. 16(6): 669–678CrossRefGoogle Scholar
  46. van Soest P.J., Wine R.H. (1968). Determination of lignin and cellulose in acid-detergent fibre with permanganate. J. AOAC Internat 51(4):780–785Google Scholar
  47. Yuan X., Jayaraman K., Bhattacharyya D. (2004). Effect of plasma treatment in enhancing the performance of woodfibre-polypropylene composites. Composites A 35(12):1363–1374CrossRefGoogle Scholar
  48. Zafeiropoulos N.E., Williams D.R., Baillie C.A., Matthews F.L. (2002). Engineering and characterisation of the interface in flax fibre/polypropylene composite materials. Part I. Development and investigation of surface treatments. Composites A 33(8):1083–1093CrossRefGoogle Scholar
  49. Zhironkin A.N., Volkov V.A. (1992). Investigation of the electrical double layer of cotton fibre in NaCl solutions. Colloid J. Russ. Acad. 54(4):470–475Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Polymer & Composite Engineering (PaCE) GroupImperial College LondonLondonUK

Personalised recommendations