, Volume 13, Issue 6, pp 679–687 | Cite as

TEMPO-mediated surface oxidation of cellulose whiskers

  • Youssef Habibi
  • Henri Chanzy
  • Michel R. VignonEmail author
Open Access


Cellulose whiskers resulting from HCl acid hydrolysis of tunicin were subjected to TEMPO-mediated oxidation under various conditions and the extent of the resulting oxidation was characterized by Fourier-transform infrared spectroscopy (FT-IR), conductimetry, X-Ray diffraction analysis and transmission electron microscopy (TEM). With degree of oxidation of up to 0.1 the samples kept their initial morphological integrity and native crystallinity, but at their surface the hydroxymethyl groups were selectively converted to carboxylic groups, thus imparting a negative surface charge to the whiskers. When dispersed in water these oxidized whiskers did not flocculate and their suspensions appeared birefringent when viewed between cross polarizers, thus indicating a liquid crystalline behavior.


Birefringent suspensions Cellulose whiskers TEMPO oxidation 



The authors thank J-L. Putaux for the TEM picture. We wish to dedicate this paper to the late Dr.␣Jean-François Revol who has been the main inspirator in the development and use of the suspensions of cellulose whiskers.


  1. Araki J., Wada M., Kuga S., Okano T. (1998). Flow properties of microcrystalline cellulose suspensions prepared by acid treatment. Colloid Surf. A. 142:75–82CrossRefGoogle Scholar
  2. Araki J., Wada M., Kuga S. (2001). Steric stabilization of cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21–27CrossRefGoogle Scholar
  3. Azizi Samir M.A.S., Alloin F., Dufresne A. (2005). Review of recent research into cellulose whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626CrossRefGoogle Scholar
  4. Battista O.A. (1950). Hydrolysis and crystallization of cellulose. Ind. Eng. Chem. 42:502–507CrossRefGoogle Scholar
  5. Battista O.A., Coppick S., Howsmon J.A., Morehead F.F., Sisson W.A. (1956). Level-off degree of polymerization. Relation to polyphase structure of cellulose fibers. Ind. Eng. Chem. 48:333–335CrossRefGoogle Scholar
  6. Chanzy H., Henrissat B. (1983). Electron microscopy study of the enzymic hydrolysis of Valonia cellulose. Carbohydr. Polym. 3:161–173CrossRefGoogle Scholar
  7. Da Silva Perez D., Montanari S., Vignon M.R. (2003). TEMPO-mediated oxidation of cellulose III. Biomacromolecules 4:1417–1425CrossRefGoogle Scholar
  8. de Nooy A.E.J., Besemer A.C., van Bekkum H. (1994). Highly selective TEMPO mediated oxidation of primary alcohol groups in polysaccharides. Recl. Trav. Chim. Pays-Bas 113:165–166Google Scholar
  9. De Souza Lima M.M., Borsali R. (2002). Static and dynamic light scattering from polyelectrolyte microcrystal cellulose. Langmuir 18:992–996CrossRefGoogle Scholar
  10. De Souza Lima M.M., Borsali R. (2004). Rodlike cellulose microcrystals: structure, properties and applications. Macromol. Rapid Commun. 25:771–787CrossRefGoogle Scholar
  11. Dong X.M., Kimura T., Revol J-F., Gray D.G. (1996). Effect of ionic strength of the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12:2076–2082CrossRefGoogle Scholar
  12. Favier V., Chanzy H., Cavaillé J-Y. (1995). Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367CrossRefGoogle Scholar
  13. Fleming K., Gray D.G., Matthews S. (2001). Cellulose crystallites. Chem. Eur. 7:1831–1835CrossRefGoogle Scholar
  14. Folda T., Hoffman H., Chanzy H., Smith P. (1988). Liquid crystalline suspensions of poly(tetrafluoroethylene) "whiskers". Nature 333:55–56CrossRefGoogle Scholar
  15. Helbert W., Nishiyama Y., Okano T., Sugiyama J. (1998). Molecular imaging of Halocynthia papillosa cellulose. J. Struct. Biol. 124:42–50CrossRefGoogle Scholar
  16. Isogai A., Kato Y. (1998). Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation. Cellulose 5:153–164CrossRefGoogle Scholar
  17. Kai A. (1976). The fine structure of Valonia microfibril. Gel permeation chromatographic studies of Valonia cellulose. Sen-i Gakkaishi 32:T-326–T-334Google Scholar
  18. Livolant F., Leforestier A. (1996). Condensed phases of DNA: structures and phase transitions. Progr. Polym. Sci. 21:1115–1164CrossRefGoogle Scholar
  19. Montanari S., Roumani M., Heux L., Vignon M.R. (2005). Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 38:1665–1671CrossRefGoogle Scholar
  20. Nishiyama Y., Langan P., Chanzy H. (2002). Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 124:9074–9082CrossRefGoogle Scholar
  21. Oster G. (1950). Two-phase formation in solutions of tobacco mosaic virus and the problem of long range forces. J. Gen. Physiol. 33:445–463CrossRefGoogle Scholar
  22. Rånby B.G. (1951). The colloidal properties of cellulose micelles. Discuss. Farad. Soc. 11:158–164CrossRefGoogle Scholar
  23. Revol J-F., Bradford H., Giasson J., Marchessault R.H., Gray D.G. (1992). Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int. J. Biol. Macromol. 14:170–172CrossRefGoogle Scholar
  24. Saito T., Isogai A. (2004). TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989CrossRefGoogle Scholar
  25. Saito T., Shibata I., Isogai A., Suguri N., Sumikawa N. (2005). Distribution of carboxylate groups introduced into cotton linters by the TEMPO-mediated oxidation. Carbohydr. Polym. 61:414–419CrossRefGoogle Scholar
  26. Saito T., Nishiyama Y., Putaux J-L., Vignon M., Isogai A. (2006). Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691CrossRefGoogle Scholar
  27. Sassi J-F., Chanzy H. (1995). Ultrastructural aspects of the acetylation of cellulose. Cellulose 2:111–127CrossRefGoogle Scholar
  28. Segal L., Creely J.J., Martin A.E. Jr., Conrad C.M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using X-ray diffractometer. Text. Res. J. 29:786–794CrossRefGoogle Scholar
  29. Sugiyama J., Vuong R., Chanzy H. (1991). Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24:4168–4175CrossRefGoogle Scholar
  30. Tahiri C., Vignon M.R. (2000). TEMPO-oxidation of cellulose: synthesis and characterization of polyglucuronans. Cellulose 7:177–188CrossRefGoogle Scholar
  31. Terech P., Chazeau L., Cavaillé J-Y. (1999). A small angle scattering study of cellulose whiskers in aqueous suspensions. Macromolecules 32:1872–1875CrossRefGoogle Scholar
  32. Van Daele Y., Revol J-F., Gaill F., Goffinet G. (1992). Characterization and supramolecular architecture of the cellulose-protein fibrils in the tunic of the sea peach (Halocynthia papillosa, Ascidiacea, Urochordata). Biol. Cell. 76:87–96CrossRefGoogle Scholar
  33. Wise L.E., Murphy M., d’Addieco A.A. (1946). Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies of the hemicelluloses. Paper Trade J. 122:35–43Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Youssef Habibi
    • 1
    • 2
  • Henri Chanzy
    • 1
  • Michel R. Vignon
    • 1
    Email author
  1. 1.Institut de Chimie Moléculaire de Grenoble (ICMG), Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS)Joseph Fourier UniversityGrenoble cedex 9France
  2. 2.Equipe des Parois Végétales et Matériaux FibreuxUMR FARE (INRA/URCA)Reims cedex 2France

Personalised recommendations