, Volume 13, Issue 3, pp 205–211 | Cite as

Preparation and cholesteric mesophase properties of (Butyl-co-pentyl) propylcellulose

  • Tada-Aki YamagishiEmail author
  • Yoshiaki Nakamoto
  • Pierre Sixou
Special issue edited by Horii


Butyl and pentyl ether derivatives of (2-hydroxypropyl) cellulose (HPC) and butyl/pentyl mixed ethers of HPC (BPPC) with different alkyl compositions were prepared in nonaqueous solution and their thermotropic cholesteric properties examined. The temperature dependence and the composition dependence of the optical pitch, nP, were then determined for all of the ether derivatives. The molecular conformation and chirality of BPPC appeared to be to be variably smooth with the side chain composition of the polymer. The response rate of cholesteric configurational change of the thermotropic mesophases arising from a temperature jump from 45  to 75 °C, was also determined. The transformation of the cholesteric mesophase formed by an equimolar ether derivative (BP-50) was faster than that of the cholesteric one formed by a single-alkyl (pentyl) ether derivative (BP-0). This seemed to be a general result reflecting a pseudo-copolymer effect of cellulose derivatives on the properties of their thermotropic cholesteric mesophases.


Butyl/Pentyl ether derivatives Cholesteric configurational change HPC Optical pitch Thermotropic mesophases 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



T.-A.Y. thanks the French Ministry of Research (D.R.E.D.) for a postdoctoral fellowship.


  1. Ambrosino S., Sixou P. (1994). Rheology of a mixture of liquid-crystal polymers in solution. J. Polym. Sci., Polym. Phys. Ed. 32: 77–84CrossRefGoogle Scholar
  2. Chanzy H., Peguy A., Chaunis S. and Monzie P. (1980). Oriented cellulose films and a mesophase system. J. Polym. Sci., Polym. Phys. Ed. 18: 1137–1144CrossRefGoogle Scholar
  3. Gray D.G. (1983). Liquid crystalline cellulose derivatives. J. Appl. Polym. Sci., Appl. Polym. Symp. 37: 179–192Google Scholar
  4. Kosho H., Hiramatsu S., Nishi T., Tanaka Y., Kawauchi S. and Watanabe J. (1999). Thermotropic cholesteric liquid crystals in ester derivatives of hydroxypropylcellulose. High Perform. Polym. 11: 41–48CrossRefGoogle Scholar
  5. Navard P. and Haudin J.M. (1980). Rheology of mesomorphic solutions of cellulose. Br. Polym. J. 12: 174–178CrossRefGoogle Scholar
  6. Nesterov A.E. and Lipatov Y.S. (1997). Thermodynamics of Polymer Blends. Technomic Publishing, Lancaster-BaselGoogle Scholar
  7. Rusig I., Dedier J., Filliatre C., Godhino M.H., Varichon L. and Sixou P. (1992). Effect of degradation on thermotropic cholesteric optical properties of (2-hydroxypropyl) cellulose (HPC) esters. J. Polym. Sci., Polym. Chem. Ed. 30: 895–899CrossRefGoogle Scholar
  8. Shimamura K., White J.L. and Fellers J.F. (1981). Hydroxypropylcellulose, a thermotropic liquid crystal: characteristics and structure development in continuous extrusion and melt Spinning. J. Appl. Polym. Sci. 26: 2165–2180CrossRefGoogle Scholar
  9. Watanabe J., Goto M. and Nagase T. (1987). Thermotropic polypeptides. 3. Investigation of cholesteric mesophase properties of poly (γ-benzyl L-glutamate-co-γ-dodecyl L-glutamates) by circular dichroic measurements. Macromolecules 20: 298–304CrossRefGoogle Scholar
  10. Werbowyj R.S. and Gray D.G. (1976). Liqiud crystalline structure in aqueous hydroxypropyl cellulose solutions. Mol. Cryst. Liq. Cryst. 34: 97–103CrossRefGoogle Scholar
  11. Yamagishi T.A. and Sixou P. (1995). Preparation and characteristics of cholesteric gel from pentyl ether of hydroxypropyl cellulose. Polymer 36: 2315–2317CrossRefGoogle Scholar
  12. Yamagishi T., Fukuda T., Miyamoto T. and Watanabe J. (1988). Thermotropic cellulose derivatives with flexible substituents. II. Effect of substituents on thermal properties. Polym. Bull. 20: 373–377CrossRefGoogle Scholar
  13. Yamagishi T., Fukuda T. , Miyamoto T. and Watanabe J. (1989). Thermotropic cellulose derivatives with flexible substituents. I. Preparation of tri-O-(β-methoxyethoxy) ethyl cellulose and its cholesteric mesophase properties. Mol. Cryst. Liq. Cryst. 172: 17–25CrossRefGoogle Scholar
  14. Yamagishi T., Fukuda T., Miyamoto T., Ichizuka T. and Watanabe J. (1990). Thermotropic cellulose derivatives with flexible substituents. IV. Temperature dependence of cholesteric pitches exhibiting a cholesteric sense inversion. Liq. Cryst. 7: 155–161CrossRefGoogle Scholar
  15. Yamagishi T., Fukuda T., Miyamoto T., Yakoh Y., Takashina Y. and Watanabe J. (1991). Thermotropic cellulose derivatives with flexible substituents. III. Columnar liquid crystals from ester-type derivatives of cellulose. Liq. Cryst. 10: 467–473CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Tada-Aki Yamagishi
    • 1
    Email author
  • Yoshiaki Nakamoto
    • 1
  • Pierre Sixou
    • 2
  1. 1.Graduate School of Natural Science and TechnologyKanazawa UniversityKakuma-machiJapan
  2. 2.Laboratoire de Physique de la Matiere CondenseeU.R.A. 190 CNRSNice CedexFrance

Personalised recommendations