, Volume 13, Issue 3, pp 281–290 | Cite as

The thermal expansion of cellulose II and IIIII crystals

  • Ritsuko Hori
  • Masahisa Wada


Highly crystalline samples of cellulose II and IIIII have been prepared from repeated mercerization of ramie fibers and supercritical ammonia treatment of the mercerized ramie fibers, respectively. The thermal expansion behavior of cellulose II and IIIII was investigated using X-ray diffraction at temperatures ranging from room temperature to 250 °C. With increasing temperature, the unit cell of cellulose II expanded in the lateral directions and contracted in the longitudinal direction, with the a and b axes increasing by 0.54 and 3.4%, respectively, and the c axis decreasing by 0.09%. The anisotropic thermal expansion in these three directions was closely related to the crystal structure and the hydrogen bonding in cellulose II. A similar anisotropic thermal expansion was also observed in cellulose IIIII. Cellulose IIIII expanded in the lateral direction but contracted in the longitudinal direction.


Ammonia treatment Cellulose II Cellulose IIIII Mercerization Ramie fiber Thermal expansion X-ray diffraction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We would like to express our appreciation to Dr. K. Noguchi of Tokyo University of Agriculture and Technology for his help during the synchrotron radiation experiment. The synchrotron radiation experiments were performed at BL40B2 in SPring-8 with the approval of the Japan Synchrotron Research Institute (JASRI) (Proposal No. 2005B0937). R.H. acknowledges financial support from the Japanese Society for the Promotion of Science.


  1. Atalla R.H. and VanderHart D.L. (1984). Native cellulose. A composite of two distinct crystalline forms. Science 223: 283–285CrossRefGoogle Scholar
  2. Barry A.J., Peterson F.C. and King A.J. (1936). X-ray studies of reaction of cellulose in non-aqueous systems. I. Interaction of cellulose and liquid ammonia. J. Am. Chem. Soc. 58: 333–337CrossRefGoogle Scholar
  3. Chanzy H., Henrissat B., Vincendon M., Tanner S.F. and Belton P.S. (1987). Solid-state 13C-N.M.R. and electron microscopy study on the reversible cellulose I → cellulose IIII transformation in Valonia. Carbohydr. Res. 160: 1–11CrossRefGoogle Scholar
  4. Davis W.E., Barry A.J., Peterson F.C. and King A.J. (1943). X-ray studies of reaction of cellulose in non-aqueous systems. II. Interaction of cellulose and primary amines. J. Am. Chem. Soc. 65: 1294–1299CrossRefGoogle Scholar
  5. Hori R. and Wada M. (2005). The thermal expansion of wood cellulose crystals. Cellulose 12: 479–484CrossRefGoogle Scholar
  6. Horii F., Hirai A. and Kitamaru R. (1987). CP/MAS 13C NMR spectra of the crystalline components of native celluloses. Macromolecules 20: 2117–2120CrossRefGoogle Scholar
  7. Kolpak F.J. and Blackwell J. (1976). Determination of the structure of cellulose II. Macromolecules 9: 273–278CrossRefGoogle Scholar
  8. Koyama M., Helbert W., Imai T., Sugiyama J. and Henrissat B. (1997). Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. Proc. Natl. Acad. Sci. USA 94: 9091–9095CrossRefGoogle Scholar
  9. Langan P., Nishiyama Y. and Chanzy H. (1999). A revised structure and hydrogen-bonding system in cellulose II from a neutron fiber diffraction analysis. J. Am. Chem. Soc. 121: 9940–9946CrossRefGoogle Scholar
  10. Langan P., Nishiyama Y. and Chanzy H. (2001). X-ray structure of mercerized cellulose at 1 Å resolution. Biomacromolecules. 2: 410–416CrossRefGoogle Scholar
  11. Langan P., Sukumar N., Nishiyama Y. and Chanzy H. 2005. Synchrotron X-ray structures of cellulose Iβ and regenerated cellulose II at ambient temperature and 100 K. Cellulose 12: 551–552Google Scholar
  12. Manjunath B.R. and Venkataraman A. (1980). Fibrillar aggregation in cotton cellulose subjected to multiple swelling treatments with alkali. J. Polym. Sci., Part A: Polym. Chem. 18: 1407–1424Google Scholar
  13. Marrinan H.J. and Mann J. (1956). Infrared spectra of the crystalline modifications of cellulose. J. Polym. Sci. 21: 301–311CrossRefGoogle Scholar
  14. Mikkonen I. (1973). X-ray study on the thermal expansion of cotton cellulose. Polymer J. 5: 263–267CrossRefGoogle Scholar
  15. Nishiyama Y., Kuga S., Wada M. and Okano T. (1997). Cellulose Microcrystal film of high uniaxial orientation. Macromolecules 30: 6395–6397CrossRefGoogle Scholar
  16. Nishiyama Y., Langan P. and Chanzy H. (2002). Crystal structure and hydrogen-bonding systems in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 124: 9074–9082CrossRefGoogle Scholar
  17. Nishiyama Y., Sugiyama J., Chanzy H. and Langan P. (2003). Crystal structure and hydrogen-bonding systems in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 125: 14300–14306CrossRefGoogle Scholar
  18. Roche H. and Chanzy H. (1981). Electron microscopy study of the transformation of cellulose I into cellulose IIII in Valonia. Int. J. Biol. Macromol. 3: 201–206CrossRefGoogle Scholar
  19. Roldan L.G. (1978). The effect of liquid anhydrous ammonia on cellulose II. In: Rowell R.M. and Young R.A. (eds) Modified Cellulosics. Academic Press, New York, pp. 303–319Google Scholar
  20. Segal L., Loeb L. and Creely J.J. (1954). An X-ray study of the decomposition product of the ethylamine-cellulose complex. J. Polym. Sci. 13: 193–206CrossRefGoogle Scholar
  21. Stipanovic A.J. and Sarko A. (1976). Packing analysis of carbohydrates and polysaccharides. 6. Molecular and crystal structure of regenerated cellulose II. Macromolecules 9: 851–857CrossRefGoogle Scholar
  22. Sueoka A., Hayashi J. and Watanabe S. (1973a). Differences between native cellulose I and regenerated cellulose I (I′). Nippon Kagaku Kaishi 1973; 594–602Google Scholar
  23. Sueoka A., Hayashi J. and Watanabe S. (1973b). Mechanism of transformation into cellulose IV (IVI and IVII) from various crystalline modifications of cellulose. Nippon Kagaku Kaishi 1973; 1345–1352Google Scholar
  24. Sugiyama J., Vuong R. and Chanzy H. (1991). Electron diffraction study of the two crystalline phases occurring in native celluloses from an algal cell wall. Macromolecules 24: 4168–4175CrossRefGoogle Scholar
  25. Takahashi M. and Takenaka H. (1982) X-ray study of the thermal expansion and transition of crystalline cellulose. Polymer J. 14: 675–679CrossRefGoogle Scholar
  26. VanderHart D.L. and Atalla R.H. (1984). Studies of microstructure in native celluloses using solid-state 13C NMR. Macromolecules 17: 1465–1472CrossRefGoogle Scholar
  27. Wada M., Heux L., Isogai A., Nishiyama Y., Chanzy H. and Sugiyama J. (2001). Improved structural data of cellulose IIII prepared in supercritical ammonia. Macromolecules 34: 1237–1243CrossRefGoogle Scholar
  28. Wada M. (2001). In situ observation of the crystalline transformation from cellulose IIII to Iβ. Macromolecules. 34: 3271–3275CrossRefGoogle Scholar
  29. Wada M. and Saito Y. (2001). Lateral thermal expansion of chitin crystals. J. Polym. Sci., Part B: Polym. Phys. 39: 168–174CrossRefGoogle Scholar
  30. Wada M. (2002). Lateral thermal expansion of cellulose Iβ and IIII polymorphs. J. Polym. Sci., Part B: Polym. Phys. 40: 1095–1102CrossRefGoogle Scholar
  31. Wada M., Chanzy H., Nishiyama Y. and Langan P. (2004). Cellulose IIII crystal structure and hydrogen bonding by synchrotron X-ray and neutron fiber diffraction. Macromolecules 37: 8548–8555CrossRefGoogle Scholar
  32. Wakelin J.H., Sutherland A. and Beck L.R. (1960). Linear thermal expansion coefficients for the crystalline phase in high polymers. J. Polym. Sci. 42:278–230CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Biomaterials Science, Graduated School of Agricultural and Life SciencesThe University of TokyoBunkyo-ku,TokyoJapan

Personalised recommendations