Advertisement

Cellulose

, 12:563 | Cite as

On the determination of crystallinity and cellulose content in plant fibres

  • Anders Thygesen
  • Jette Oddershede
  • Hans Lilholt
  • Anne Belinda Thomsen
  • Kenny Ståhl
Article

Abstract

A comparative study of cellulose crystallinity based on the sample crystallinity and the cellulose content in plant fibres was performed for samples of different origin. Strong acid hydrolysis was found superior to agricultural fibre analysis and comprehensive plant fibre analysis for a consistent determination of the cellulose content. Crystallinity determinations were based on X-ray powder diffraction methods using side-loaded samples in reflection (Bragg-Brentano) mode. Rietveld refinements based on the recently published crystal structure of cellulose Iβ followed by integration of the crystalline and amorphous (background) parts were performed. This was shown to be straightforward to use and in many ways advantageous to traditional crystallinity determinations using the Segal or the Ruland–Vonk methods. The determined cellulose crystallinities were 90–100 g/100 g cellulose in plant-based fibres and 60–70 g/100 g cellulose in wood based fibres. These findings are significant in relation to strong fibre composites and bio-ethanol production.

Keywords

Cellulose Crystallinity Debye Plant fibres Rietveld X-ray 

Abbreviations

HPLC

High pressure liquid chromatography

DM

Dry matter

Notes

Acknowledgements

This work was part of the project ‘High performance hemp fibres and improved fibre networks for composites’ supported by the Danish Research Agency of the Ministry of Science and of the project EFP Bioethanol part 2 J. nr. 1383/03–0002. Dr. Claus Felby is acknowledged as supervisor for Ph. D. student Anders Thygesen. Mr. Tomas Fernqvist and Mrs. Ingelis Larsen are acknowledged for technical assistance and Dr. Bo Madsen, Dr. Enikö Varga and Dr. Mette Hedegaard Thomsen are acknowledged for discussion and inspiration.

References

  1. Alexander L.E. (1969). X-ray diffraction methods in polymer science. Wiley-Interscience, New YorkGoogle Scholar
  2. Andersson S., Serimaa R., Paakkari T., Saranpää P. and Pesonen E. (2003). Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies). J. Wood Sci. 49:531–537Google Scholar
  3. Bardage S., Donaldson L., Tokoh C. and Daniel G. 2004. Ultrastructure of the cell wall of unbeaten Norway spruce pulp fibre surfaces. Nordic Pulp Paper Res. J. 19(4):448–452CrossRefGoogle Scholar
  4. Browning B.L. (1967). Methods of wood chemistry. Interscience Publishers, A division of John Wiley & Sons, New YorkGoogle Scholar
  5. Buschle-Diller G. and Zeronian S.H. (1992). Enhancing the reactivity and strength of cotton fibres. J. Appl. Polym. Sci. 45(6):967–979CrossRefGoogle Scholar
  6. Debye P. (1915). Zerstreuung von Röntgenstrahlen. Ann. Phys. 46:809–823CrossRefGoogle Scholar
  7. De Souza I.J., Bouchard J., Methot M., Berry R. and Argyropoulos D.S. (2002). Carbohydrates in oxygen delignification. Part I: Changes in cellulose crystallinity. J. Pulp Paper Sci. 28(5):167–170Google Scholar
  8. Felby C., Klinke H.B., Olsen H.S. and Thomsen A.B. (2003). Ethanol from wheat straw cellulose by wet oxidation pretreatment and simultaneous saccharification and fermentation. ACS Symposium Series 855:157–174CrossRefGoogle Scholar
  9. Fink H.P. and Walenta E. (1994). Röntgenbeugungsuntersuchungen zur übermolekularen Struktur von Cellulose im Verarbeitungsprozeß. Papier 48(12):739–748Google Scholar
  10. Finkenstadt V.L. and Millane R.P. (1998). Crystal structure of Valonia cellulose Iβ. Macromolecules 31(22):7776–7783CrossRefGoogle Scholar
  11. Goering H.K. and Van Soest P.J. (1970). Forage fiber analyses (apparatus, reagents, procedures and some applications). Agricultural Research Service, USDA Washington DCGoogle Scholar
  12. Hepworth D.G., Bruce D.M., Vincent J.F.V. and Jeronimidis G. (2000). The manufacture and mechanical testing of thermosetting natural fibre composites. J. Mater. Sci. 35(2):293–298CrossRefGoogle Scholar
  13. Howard C.J. and Hill R.J. 1986. LHMP: a computer program for Rietveld analysis of fixed wavelength X-ray and neutron powder diffraction patterns. AAEC (now ANSTO) Report M112. Lucas Heights Research LaboratoryGoogle Scholar
  14. Kaar W.E., Cool L.G., Merriman M.M. and Brink D.L. (1991). The complete analysis of wood polysaccharides using HPLC. J. Wood Chem. Technol. 11(4):447–463CrossRefGoogle Scholar
  15. Klinke H.B., Lilholt H., Toftegaard H., Andersen T.L., Schmidt A.S. and Thomsen A.B. 2001. Wood and plant fibre reinforced polypropylene composites. In 1st world conference on biomass for energy and industry. James & James (Science Publishers), pp. 1082–1085Google Scholar
  16. Koyama M., Helbert W., Imai T., Sugiyama J. and Henrissat B. (1997). Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. Proceedings of the National Academy of Sciences of the United States of America 94(17):9091–9095CrossRefPubMedGoogle Scholar
  17. Liitia T., Maunu S.L., Hortling B., Tamminen T., Pekkala O., Varhimo A. (2003). Cellulose crystallinity and ordering of hemicelluloses in pine and birch pulps as revealed by solid-state NMR spectroscopic methods. Cellulose 10:307–316CrossRefGoogle Scholar
  18. Madsen B. and Lilholt H. (2003). Physical and mechanical properties of unidirectional plant fibre composites - an evaluation of the influence of porosity. Compos. Sci. Technol. 63(9):1265–1272CrossRefGoogle Scholar
  19. Mwaikambo L.Y. and Ansell M.P. (1999). The effect of chemical treatment on the properties of hemp, sisal, jute and kapok for composite reinforcement. Angewandte Makromolekulare Chemie 272:108–116CrossRefGoogle Scholar
  20. Nishiyama Y., Langan P. and Chanzy H. (2002). Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J. American Chem. Society 124(31):9074–9082CrossRefGoogle Scholar
  21. Rietveld H.M. (1967). Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr. 22:151–152CrossRefGoogle Scholar
  22. Rietveld H.M. (1969). A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2:65–71CrossRefGoogle Scholar
  23. Ruland W. (1961). X-ray determination of crystallinity and diffuse disorder scattering. Acta Crystallogr. 14:1180–1185CrossRefGoogle Scholar
  24. Sao K.P., Samantaray B.K. and Bhattacherjee S. (1994). X-ray study of crystallinity and disorder in ramie fiber. J. Appl. Polym. Sci. 52:1687–1694CrossRefGoogle Scholar
  25. Sao K.P., Samantaray B.K. and Bhattacherjee S. (1997). Analysis of lattice distortions in ramie cellulose. J. Appl. Polym. Sci. 66:2045–2046CrossRefGoogle Scholar
  26. Sarko A. and Muggli R. (1974). Packing analysis of carbohydrates and polysaccharides. 3. Valonia cellulose and cellulose-II. Macromolecules 7(4):486–494CrossRefGoogle Scholar
  27. Segal L., Creely J.J., Martin A.E. and Conrad C.M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Res. J. 29:786–794Google Scholar
  28. Simon I., Glasser L., Scheraga H.A. and Manley R.S. (1988). Structure of cellulose. 2. Low-energy crystalline arrangements. Macromolecules 21(4):990–998CrossRefGoogle Scholar
  29. Sugiyama J., Vuong R. and Chanzy H. (1991). Electron diffraction study on the two crystalline phases occuring in native cellulose from an algal cell wall. Macromolecules 24(14):4168–4175CrossRefGoogle Scholar
  30. Teeri T.T. and Koivula A. (1995). Cellulose degradation by native and engineered fungal cellulases. Carbohydr. Europe. 12:28–33Google Scholar
  31. Thomsen A.B., Rasmussen S.K., Bohn V., Nielsen K.V. and Thygesen A. 2005. Hemp raw materials: The effect of cultivar, growth conditions and pretreatment on the chemical composition of the fibres. Risø National Laboratory. Report No.: R-1507Google Scholar
  32. Thygesen A., Thomsen A.B., Schmidt A.S., Jørgensen H., Ahring B.K. and Olsson L. (2003). Production of cellulose and hemicellulose-degrading enzymes by filamentous fungi cultivated on wet-oxidised wheat straw. Enzyme Microb. Technol. 32(5):606–615CrossRefGoogle Scholar
  33. Thygesen A., Thomsen M.H., Jørgensen H., Christensen B.H. and Thomsen A.B. 2004. Hydrothermal treatment of wheat straw on pilot plant scale, 2nd World Conference and Technology Exhibition on Biomass for Energy, Industry and Climate Protection, Rome, Italy, 10–15th May 2004Google Scholar
  34. Varga E., Reczey K. and Zacchi G. (2004). Optimization of steam pretreatment of corn stover to enhance enzymatic digestibility. Appl. Biochem. Biotechnol., 113–16:509–523CrossRefPubMedGoogle Scholar
  35. Vonk C.G. (1973). Computerization of Rulands X-ray method for determination of crystallinity in polymers. J. Appl. Crystallogr. 6:148–152CrossRefGoogle Scholar
  36. Woodcock C. and Sarko A. (1980). Packing analysis of carbohydrates and polysaccharides. 11. Molecular and crystal-structure of native ramie cellulose. Macromolecules 13(5):1183–1187CrossRefGoogle Scholar
  37. Young R.A. (ed.) 1993. The Rietveld Method. Oxford University PressGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Anders Thygesen
    • 1
    • 2
  • Jette Oddershede
    • 3
  • Hans Lilholt
    • 1
  • Anne Belinda Thomsen
    • 4
  • Kenny Ståhl
    • 3
  1. 1.Materials Research DepartmentRisø National LaboratoryDK-4000RoskildeDenmark
  2. 2.Danish Centre for Forest, Landscape and PlanningThe Royal Veterinary and Agricultural UniversityTåstrupDenmark
  3. 3.Department of ChemistryTechnical University of DenmarkLyngbyDenmark
  4. 4.Biosystems DepartmentRisø National LaboratoryRoskildeDenmark

Personalised recommendations