, Volume 12, Issue 3, pp 253–265 | Cite as

Determination of Fibre Pore Structure: Influence of Salt, pH and Conventional Wet Strength Resins

  • Bo AndreassonEmail author
  • Jennie Forsström
  • Lars Wågberg


It has been shown, in the present investigation, that the two methods used to investigate the pore size distribution of unbleached chemical pulps, i.e. inverse size exclusion chromatography (ISEC) and nuclear magnetic resonance (NMR), give different average pore radius for the pores inside the fibre wall. This is due to the way in which these experiments are performed and the sensitivity of the methods to different types of pores in the cell wall. It was also shown that the two methods gave different results when changing the pH and the ionic strength of the pulp suspension. The pore radius, as detected with ISEC, decreased with both increasing ionic strength and decreasing pH, indicating a loose structure of the exterior of the fibrillar network. However, the pore radius as detected with NMR, was virtually unaffected when increasing the ionic strength, indicating a very rigid structure of the interior of the fibre wall. Decreasing pH though, lead to a decrease in pore radius indicating that upon protonation of the carboxylic groups in the fibre wall, the electrostatic repulsion is diminished and the average pore radius decreases. The NMR technique was also used to study wet strength aid penetration into the fibre wall. It was shown that wet strength aids with a small molecular weight, penetrated the fibre wall, as detected by a decrease in pore radius. It was also shown that addition of different wet strength aids increased the tensile index of the sheet and decreased the fibre strength, measured as zero span-strength of the sheets.


Crosslinking Dry strength agents Fibres Fibre saturation point Pore size distribution Tensile strength Wet strength agents 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreasson, B., Forsström, J., Wågberg, L. 2003The porous structure of pulp fibres with different yields and its influence on paper strengthCellulose10111123CrossRefGoogle Scholar
  2. Berthold, J., Salmen, L. 1997Inverse size exclusion chromatography (ISEC) for determining the relative pore size distribution of wood pulpsHolzforschung51361368Google Scholar
  3. Caulfield, D.F., Weatherwax, R.C. 1976Cross-link wet-stiffening of paper: the mechanismTappi59114118Google Scholar
  4. Caulfield, D.N. 1994Ester cross-linking to improve wet performance of paper using multifunctional carboxylic-acids, butanetetracarboxylic acid and citric-acidTappi J.77205212Google Scholar
  5. Davison, R.W. 1972The weak link in paper dry strengthTappi55567573Google Scholar
  6. Davison, R.W. 1980Theory of dry strength developmentReynolds, W.F. eds. Dry Strength AdditivesTAPPI PressAtlanta1Google Scholar
  7. Espy, H.H., Rave, T.W. 1988The mechanism of wet-strength development by alkaline-curing amino polymer-epichlorohydrin resinsTappi J.71133137Google Scholar
  8. Espy, H.H. 1994Alkaline-curing polymeric amine-epichlorohydrin resinsChan, L.I. eds. Wet-strength Resins and Their ApplicationTAPPI PressAtlanta13Google Scholar
  9. Grignon, J., Scallan, A.M. 1980Effects of pH and neutral salts upon the swelling of cellulose gelsJ. Appl. Polym. Sci.2528292843CrossRefGoogle Scholar
  10. Heyden, S., Gustafsson, P.J. 2001Stress–strain performance of paper and fluff by network modellingBaker, C.F. eds. The Science of Paper Making – Trans12th Fund. Res. Symp.OxfordUK1385Google Scholar
  11. Håkansson, B., Nydén, M., Söderman, O. 2000The influence of polymer molecular weight distributions on pulsed field gradient nuclear magnetic resonance self-diffusion experimentsColloid Polym. Sci.278399405CrossRefGoogle Scholar
  12. Häggqvist, M., Li, T.-Q., Ödberg, L. 1998aEffects of drying and pressing on the pore structure in the cellulose fibre wall studied by 1H and 2H NMR relaxationCellulose53349CrossRefGoogle Scholar
  13. Häggqvist, M., Solberg, D., Wågberg, L., Ödberg, L. 1998bThe influence of two wet strength agents on pore size and swelling of pulp fibres and on tensile strength propertiesNordic Pulp Paper Res. J.13292298Google Scholar
  14. Laivins, G.V., Scallan, A. M. 1993The mechanism of hornification of wood pulpsBaker, C.F. eds. Products of Papermaking – Trans. 11th Fund Res SympOxfordUK1235Google Scholar
  15. Li T.-Q. 1991.Interaction between water and celluloes fibres. Ph. D. Thesis, Royal institute of technology, Stockholm, Sweden.Google Scholar
  16. Lindström, T. 1986The porous lamellar structure of the cell wallBristow, J.A.Kolseth, P. eds. Paper Structure and PropertiesMarcel Dekker IncNew York99Vol 8Google Scholar
  17. McKenzie, A.W. 1984The structure and properties of paper part XXI. The diffusion theory of adhesion applied to inter fibre bondingAppita39580583Google Scholar
  18. Nydén, M. 1998NMR Diffusion Studies in Heterogeneous Systems. Surfactant solutions, Polymer solutions and GelsUniversity of LundLundPhD thesis, Physical Chemistry 1Google Scholar
  19. Pelton, R., Zhang, J., Wågberg, L., Rundlöf, M. 2000The role of surface polymer compability in the formation of fiber/fiber bonds in paperNordic Pulp Paper Res. J.15400406Google Scholar
  20. Provencher, S.W. 1982A general purpose constrained regularisation program for inverting noisy linear algebraic and integral equationsComput. Phys. Commun.27229242CrossRefGoogle Scholar
  21. Rundlöf, M. 2002Interaction of dissolved and colloidal substances with fines of mechanical pulp-Influence on sheet properties and basic aspects of adhesionRoyal Institue of TechnologyStockholmSwedenPh. D. ThesisGoogle Scholar
  22. Scallan, A.M., Grignon, J. 1979The effect of cations on pulp and paper propertiesSvensk Papperstidning24047Google Scholar
  23. Stone, J.E., Scallan, A.M. 1965Influence of drying on the pore structures of the cell wallBolam, F. eds. Consolidation of the paperweb. Tech. Sect. BP and BMALondon145Google Scholar
  24. Stratton, R., Colson, N.M. 1993Fibre wall damage during bond failureNordic Pulp Paper Res. J.8245249Google Scholar
  25. Swerin, A., Wågberg, L. 1994Size-exclusion chromatography for characterization of cationic polyelectrolytes used in papermakingNordic Pulp Paper Res. J.91825Google Scholar
  26. Swerin, A., Ödberg, L., Lindström, T. 1990Deswelling of hardwood kraft pulp fibres by cationic polymers: the effect on wet pressing and sheet propertiesNordic Pulp Paper Res. J.5188196Google Scholar
  27. Taylor, D.L. 1968Mechanism of wet tensile failureTappi51410413Google Scholar
  28. Vold, R.L., Waugh, J.S., Klein, M.P., Phelps, D.E. 1968Measurement of spin relaxation in complex systemsJ. Chem. Phys.4838313832CrossRefGoogle Scholar
  29. Weatherwax, R.C., Caulfield, D.F. 1978The pore structure of papers wet stiffened by formaldehyde crosslinkingJ. Coll. Int. Sci.67498505CrossRefGoogle Scholar
  30. Wågberg, L., Björklund, M. 1993On the mechanism behind wet strength development in paper containing wet strength resinsNordic Pulp Paper Res. J.85358Google Scholar
  31. Wågberg, L., Ödberg, L., Glad-Nordmark, G. 1989Charge determination of porous substrates by polyelectrolyte adsorption. Part 1. Carboxymethylatedbleached cellulosic fibersNordic Pulp Paper Res. J.47176Google Scholar
  32. Wågberg L. and Annergren G. 1997. Physico-chemical characterisaiton of paper making fibres. Fundamentals of Papermaking Materials – 11th Fund Res Symp., Vol. 1. Cambridge, UK, p. 1.Google Scholar
  33. Xu, Y.F., Chen, C.M., Yang, C.Q. 1998Application of polymeric multifunctional carboxylic acids to improve wet strengthTappi J.81159164Google Scholar
  34. Xu, Y.F., Yang, C.Q., Chen, C.M. 1999Wet reinforcement of paper with high-molecular-weight multifunctional carboxylic acidTappi J.82150156Google Scholar
  35. Zhang, J., Pelton, R., Wågberg, L., Rundlöf, M. 2000The effect of charge density and hydrofobic modification on dextran-based paper strength enhancing polymersNordic Pulp Paper Res. J.15440445Google Scholar
  36. Zhou, Y.J., Luner, P., Caluwe, P. 1995Mechanism of crosslinking of papers with polyfunctional carboxylic acidsJ. Appl. Polym. Sci.5815231534CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Bo Andreasson
    • 1
    Email author
  • Jennie Forsström
    • 2
    • 3
  • Lars Wågberg
    • 4
  1. 1.SCA Graphic ResearchSundsvallSweden
  2. 2.Fibre technology, Department of Fibre and Polymer TechnologyRoyal Institute of TechnologyStockholmSweden
  3. 3.Fibre Science and Communication NetworkMidsweden UniversitySundsvallSweden
  4. 4.Department of Fibre and Polymer TechnologyRoyal Institute of TechnologyStockholmSweden

Personalised recommendations