Advertisement

Cellulose

, Volume 12, Issue 3, pp 223–231 | Cite as

New Method for Determining the Degree of Cellulose I Crystallinity by Means of FT Raman Spectroscopy

  • Karla Schenzel
  • Steffen Fischer
  • Erica Brendler
Article

Abstract

A Raman crystallinity index – XcRaman – characterizing the degree of crystallinity of partially crystalline cellulose I samples was created, utilizing the crystallinity dependence of CH2 bending modes. For calibration, physical mixtures containing different mass fractions of crystalline cellulose I and its amorphous form were prepared. Crystallinities from 0 to 60% were generated. Relative intensity ratios of the Raman lines I\(_{1481 {cm^-1}}\) and I\(_{1462 {cm^-1}}\) characterizing crystalline and amorphous parts of cellulose I correlated linearly with the mass fraction of crystalline cellulose I of the mixtures. XcRaman values of microcrystalline celluloses of different origins and varying degree of crystallinity correlated reasonably with results obtained from NMR spectroscopy (XcNMR values).

Keywords

Cellulose I Crystallinity FT Raman spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atalla, R.H., VanderHart, D.L. 1984Native cellulose: a composite of two distinct crystalline formsScience223283284Google Scholar
  2. Atalla, R.H. 1989Patterns of aggregation in native celluloses: implication of recent spectroscopic studiesKenndey, J.F.Phillips, G.O.Williams, P.A. eds. CelluloseEllis HorwoodChichester6173Google Scholar
  3. Fink, H.-P., Fanter, D., Phillip, B. 1985Wide angle X-ray study of the supramolecular structure at the cellulose I – cellulose II phase transitionActa Polym.3618CrossRefGoogle Scholar
  4. Fischer, K., Goldberg, W., Schmidt, I. 1987Changes in lignin and cellulose by irradiationMakromol. Chem.12303315Google Scholar
  5. Giles, J.H., Gilmore, D.A., Denton, B.M. 1999Quantitative analysis using Raman spectroscopy without spectral standardizationJ. Raman Spectrosc.30767771CrossRefGoogle Scholar
  6. Hendra, P.J., Jones, C., Warnes, G. 1991Fourier Transform Raman Spectroscopy: Instrumentation and Chemical ApplicationsEllis HorwoodNew YorkGoogle Scholar
  7. Hermans, P.H., Weidinger, A. 1949X-ray studies on the crystallinity of celluloseJ. Polym. Sci.4135144CrossRefGoogle Scholar
  8. Horii, F., Hirai, A., Kitamaru, R. 1987Cross-polarization magic angle spinning carbon 13 NMR approach to the structural analysis of celluloseACS Symp. Ser.340119134Google Scholar
  9. Hulleman, St. H.D., Hazendonk, J.M., van Dam, J.E.G. 1994Determination of crystallinity in native cellulose from higher plants with diffuse reflectance Fourier transform infrared spectroscopyCarbohydr. Res.261163172CrossRefGoogle Scholar
  10. Hüttenrauch, R., Fricke, S., Zielke, P. 1985Mechanical activation of pharmaceutical systemsPharm. Res.2302306CrossRefGoogle Scholar
  11. Kunze, J., Fink, H.-P. 1999Charakterisierung von cellulose und cellulosederivaten mittels hochauflösender Festkörper−13C-NMR-SpektroskopieDas Papier12753764Google Scholar
  12. Massiot, D., Fayon, F., Capron, M., King, I., Le Calvé, S., Alonso, B., Durand, J.-O., Bujoli, B., Gan, Z., Hoatson, G. 2002Modelling one and two-dimensional solid-state NMR spectraMagnet. Res. Chem.407076CrossRefGoogle Scholar
  13. Nelson, M.L., O’Connor, R.T. 1964Relation of certain Infrared bands to cellulose crystallinity and crystal lattice typePart II. A new Infrared ratio for estimation of crystallinity in celluloses I and II. J. Appl. Polym. Sci.813251341Google Scholar
  14. Newman, R.H., Hemmingson, J.A. 1990Determination of the degree of cellulose crystallinity in wood by carbon-13 nuclear magnetic resonance spectroscopyHolzforschung44351355Google Scholar
  15. Polizzi, S., Fagherazzi, G., Benedetti, A., Battagliarin, M., Asano, T. 1990A fitting method for the determination of crystallinity by means of X-ray diffractionJ. Appl. Crystallogr.23359365CrossRefGoogle Scholar
  16. Ruland, W. 1961X-ray determination of crystallinity and diffuse disorder scatteringActa Crystallogr.1411801185CrossRefGoogle Scholar
  17. Schenzel, K., Fischer, S. 2001NIR FT Raman spectroscopy – a rapid analytical tool for detecting the transformation of cellulose polymorphsCellulose84957CrossRefGoogle Scholar
  18. Schenzel K. and Fischer S. 2002. Differentiation of cellulose using FT Raman Spectroscopy, Curve-Fitting experiments, Derivative Spectrometry and Multivariate Data Analysis. 223rd ACS National Meeting, OrlandoAbstracts of Papers, CELL-074. .Google Scholar
  19. Schrader, B. eds. 1995Infrared and Raman Spectroscopy, Methods and ApplicationsVCH WeinheimNew York, Basel, CambridgeGoogle Scholar
  20. Siesler, H.W., Holland-Moritz, K. 1980Infrared and Raman Spectroscopy of PolymersMarcel DekkerNew YorkGoogle Scholar
  21. Stuart, B.H. 1996Polymer crystallinity studied using Raman spectroscopyVibr. Spectrosc.107987CrossRefGoogle Scholar
  22. Wiley, J.H., Atalla, R.H. 1987aBand assignments in the Raman spectra of celluloseCarbohydr. Res.160113129CrossRefGoogle Scholar
  23. Wiley J.H. and Atalla R.H. 1987b. Raman spectra of celluloses. In: Atalla R.H. (ed.), The structure of cellulose. ACS Symp. Ser. 340 151–424. 231.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Karla Schenzel
    • 1
  • Steffen Fischer
    • 2
  • Erica Brendler
    • 3
  1. 1.Agricultural DepartmentMartin Luther University Halle-WittenbergHalleGermany
  2. 2.Fraunhofer Instiute of Applied Polymer Research IAPGolmGermany
  3. 3.Institute of Analytical ChemistryTechnical University FreibergFreibergGermany

Personalised recommendations