, Volume 12, Issue 2, pp 135–144 | Cite as

Water-activated cellulose-based electrorheological fluids

  • Shengbin Zhang
  • William T. Winter
  • Arthur J. Stipanovic


The performance of electrorheological (ER) fluids containing cellulose particles dispersed in lubricating oil was investigated as a function of particle water content, DC electric field strength, particle concentration, and temperature. Over a range of applied electric fields (0–3 kV/mm), yield stress was observed to increase with increasing cellulose moisture content up to 8.5 wt% followed by a decrease. Water adsorbed by cellulose particles used in these systems was shown to be non-freezing bound water. The maximum ER response for a cellulose-based fluid at 25 °C was observed at a moisture content near the transition of less mobile ‘liquid-like’ (LM) water to more mobile ‘liquid-like’ (MM) non-freezing water. At a constant moisture level, yield stress increased linearly with increases in either electrical field strength or particle concentration, while the ER effect decreased with increasing temperature. The present study concludes that the performance of water-activated ER fluids based on cellulose particles is influenced strongly by the mobility of non-freezing bound water adsorbed onto cellulose.


Cellulose Electrorheological fluids Electrorheology Water mobility 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berthold, J., Desbrières, J., Rinaudo, M., Salmén, L. 1994Types of adsorbed water in relation to the ionic groups and their counter-ions for some cellulose derivativesPolymer3557295736Google Scholar
  2. Berthold, J., Rinaudo, M., Salmeń, L. 1996Association of water to polar groups: estimations by an adsorption model for lingo-cellulosic materialsColloid Surf. A: Physicochem. Eng. Aspects112117129Google Scholar
  3. Blicharska, B., Kluza, M. 1996NMR relaxation in cellulose pulpColloid. Surf. A: Physicochem. Eng. Aspects115137140Google Scholar
  4. Block, H., Kelly, J.P. 1988Electro-rheologyJ. Phys. D: Appl. Phys.2116611677Google Scholar
  5. Boissy, C., Atten, P., Foulc, J.N. 1995On the role of conductivities and frequency in the electrorheological effectBullough, W.A. eds. Proceedings of the 5th International Conference on Electro-Rheological Fluids, Magneto-Rheological Suspensions and Associated TechnologyWorld ScientificSheffieldUK756763Google Scholar
  6. Capitani, D., Emanuele, M.C., Bella, J., Segre, A.L., Attanasio, D., Focher, B., Capretti, G. 1999 1H NMR relaxation study of cellulose and water interaction in paperTappi J.82117124Google Scholar
  7. Capitani, D., Segre, A.L., Attanasio, D., Blicharska, B., Focher, B., Capretti, G. 1996 1H NMR relaxation study of paper as a system of cellulose and waterTappi J.79113122Google Scholar
  8. Chen, Y., Conrad, H. 1993Effects of water content on the electrorheology of corn starch/corn oil dispersionsSiginer, D.Van Arsdale, W.Altan, M.Alexandrou, A. eds. Developments in Non-Newtonian Flows, Vol. 175ASMENew York199208Google Scholar
  9. Choi, U.S., Conrad, H. 1998Electrorheology of chitin and chitosan suspensions: conductivity vs. molecular structureRheol. Fluid Mech. Nonlinear Mater.MD 81145151Google Scholar
  10. Conrad, H., Li, Y., Chen, Y. 1995The temperature dependence of the electrorheology and related electrical properties of corn starch/corn oil suspensionsJ. Rheol.3910411057Google Scholar
  11. Conrad, H., Sprecher, A.F. 1991Characteristics and mechanisms of electrorheological fluidsJ. Stat. Phys.6410731091Google Scholar
  12. Czihak, C., Muller, M., Schober, H., Heux, L., Vogl, G. 1999Dynamics of water adsorbed to cellulosePhysica B2668791Google Scholar
  13. Davis, L.C. 1992Polarization forces and conductivity effects in electrorheological fluidsJ. Appl. Phys.7213341340Google Scholar
  14. Deynega, Y.F., Popko, K.K., Kovganich, N.Y. 1978Temperature dependence of the electroviscous effect and dielectric parameters of suspensions of hydrated substances in hydrocarbonsHeat Transfer-Soviet Res.105056Google Scholar
  15. Foulc, J.-N., Atten, P., Felici, N. 1994Macroscopic model of interaction between particles in an electrorheological fluidJ. Electrostat.33103112Google Scholar
  16. Froix, M.F., Nelson, R. 1975The interaction of water with cellulose from nuclear magnetic resonance relaxation timesMacromolecules8726730Google Scholar
  17. Hao, T., Kawai, A., Ikazaki, F. 1998Mechanism of the electrorheological effect: evidence from the conductivedielectric, and surface characteristics of water-free electrorheological fluidsLangmuir1412561262Google Scholar
  18. Hartsock, D.L., Novak, R.F., Chaundy, G.J. 1991ER fluid requirements for automotive devicesJ. Rheol.3513051326Google Scholar
  19. Hatakeyama, T., Ikeda, Y., Hatakeyama, H. 1987Effect of bound water on structural change of regenerated celluloseMakromol. Chem.18818751884Google Scholar
  20. Havelka, K.O., Pialet, J.W. 1996Electrorheological technology: the future is nowChemtech263645Google Scholar
  21. Klass, D.L., Martinek, T.W. 1967aElectroviscous fluids. I. rheological propertiesJ. Appl. Phys.386774Google Scholar
  22. Klass, D.L., Martinek, T.W. 1967bElectroviscous fluids. II. electrical propertiesJ. Appl. Phys.387580Google Scholar
  23. Klingenberg, D.J., Zukoski, C.F. 1990Studies on the steady-shear behavior of electrorheological suspensionsLangmuir61525Google Scholar
  24. Nakai, Y., Fukuoka, E., Nakajima, S., Hasegawa, J. 1977Crystallinity and physical characteristics of microcrystalline celluloseJ. Chem. Pharm. Bull.2596101Google Scholar
  25. Nakamura, K., Hatakeyama, T., Hatakeyama, H. 1981Studies on bound water of cellulose by differential scanning calorimetryText. Res. J.57607613CrossRefGoogle Scholar
  26. Ono, J., Yamada, H., Matsuda, S., Okajima, K., Kawamoto, T., Iijima, H. 1998 1H-NMR relaxation of water molecules in the aqueous microcrystalline cellulose suspension systems and their viscosityCellulose5231247Google Scholar
  27. Plonka, A.M. 1982Characteristics of microcrystalline and microfine cellulosesCell. Chem. Technol.16473483Google Scholar
  28. Shulman, Z.P., Gorodkin, R.G., Korobko, E.V., Gleb, V.K. 1981The electrorheological effect and its possible usesJ. Non-Newton. Fluid Mech.82941Google Scholar
  29. Sottys, J., Lisowski, Z., Knapczyk, J. 1984X-ray diffraction study of the crystallinity index and the structure of the microcrystalline celluloseActa Pharm. Technol.30174180Google Scholar
  30. Stangroom, J.E. 1983Electrorheological fluidsPhys. Technol.14290296Google Scholar
  31. Stipanovic, A.J., Schoonmaker, J.P. 1995The impact of crystalline phase morphology on the water-promoted electrorheological effect of polysaccharidesHavelka, K.O.Filisko, F.E. eds. Progress in ElectrorheologyPlenum PressNew York195205Google Scholar
  32. Tang, X., Wu, C., Conrad, H. 1995On the conductivity model for the electrorheological effectJ. Rheol.3910591073Google Scholar
  33. Uejima, H. 1972Dielectric mechanism and rheological properties of electro-fluidsJpn. J. Appl. Phys.11319326Google Scholar
  34. Vittadini, E., Dickinson, L.C., Chinachoti, P. 2001 1H and 2H NMR mobility in celluloseCarbohydr. Polym.464957Google Scholar
  35. Volkov, V.I., Korotchkova, S.A., Nesterov, I.A., Ohya, H., Guo, Q., Huang, J., Chen, J. 1996The self-diffusion of water and ethanol in cellulose derivative membranes and particles with the pulsed field gradient NMR dataJ. Membr. Sci.110111Google Scholar
  36. Wen, W., Ma, H., Tam, W.Y., Sheng, P. 1997Frequency and water content dependencies of electrorheological propertiesPhys. Rev. E55R1294R1297Google Scholar
  37. Winslow W.M. 1947. U.S. Patent 2,417,850.Google Scholar
  38. Winslow, W.M. 1949Induced fibrillation of suspensionsJ. Appl. Phys.2011371140Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Shengbin Zhang
    • 1
  • William T. Winter
    • 1
  • Arthur J. Stipanovic
    • 1
  1. 1.Department of Chemistry and the Cellulose Research InstituteSUNY-College of Environmental Science and ForestrySyracuseUSA

Personalised recommendations