Advertisement

The evolution of the Line of Variations at close encounters: an analytic approach

  • G. B. ValsecchiEmail author
  • A. Del Vigna
  • M. Ceccaroni
Original Article

Abstract

We study the post-encounter evolution of fictitious small bodies belonging to the so-called Line of Variations (LoV) in the framework of the analytic theory of close encounters. We show the consequences of the encounter on the local minimum of the distance between the orbit of the planet and that of the small body and get a global picture of the way in which the planetocentric velocity vector is affected by the encounter. The analytical results are compared with those of numerical integrations of the restricted three-body problem.

Keywords

Close encounter Perturbation Asteroid Comet 

Notes

Acknowledgements

We are grateful to D. Farnocchia for his very useful comments.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Carusi, A., Valsecchi, G.B., Greenberg, R.: Planetary close encounters - geometry of approach and post-encounter orbital parameters. Celest. Mech. Dyn. Astron. 49, 111–131 (1990)ADSCrossRefGoogle Scholar
  2. Everhart, E.: An efficient integrator that uses Gauss–Radau spacings. In: Carusi, A., Valsecchi, G.B. (eds.) Dynamics of Comets: Their Origin and Evolution, p. 185. Reidel, Dordrecht (1985)CrossRefGoogle Scholar
  3. Greenberg, R., Carusi, A., Valsecchi, G.B.: Outcomes of planetary close encounters: a systematic comparison of methodologies. Icarus 75, 1–29 (1988)ADSCrossRefGoogle Scholar
  4. Kizner, W.: A method of describing miss distances for lunar and interplanetary trajectories. Planet. Space Sci. 7, 125–131 (1961)ADSCrossRefGoogle Scholar
  5. Milani, A.: The asteroid identification problem. I. Recovery of lost asteroids. Icarus 137, 269–292 (1999)ADSCrossRefGoogle Scholar
  6. Milani, A., Chesley, S.R., Sansaturio, M.E., Tommei, G., Valsecchi, G.B.: Nonlinear impact monitoring: line of variation searches for impactors. Icarus 173, 362–384 (2005)ADSCrossRefGoogle Scholar
  7. Öpik, E.J.: Interplanetary Encounters: Close-Range Gravitational Interactions. Elsevier, Amsterdam (1976)Google Scholar
  8. Valsecchi, G.B.: Geometric conditions for Quasi-collisions in Öpik’s Theory. In: Souchay, J. (ed.) Dynamics of Extended Celestial Bodies and Rings. Lecture Notes in Physics, vol. 682, p. 145. Springer, Berlin (2006)CrossRefGoogle Scholar
  9. Valsecchi, G.B., Milani, A., Gronchi, G.F., Chesley, S.R.: The distribution of energy perturbations at planetary close encounters. Celest. Mech. Dyn. Astron. 78, 83–91 (2000)ADSCrossRefGoogle Scholar
  10. Valsecchi, G.B., Milani, A., Gronchi, G.F., Chesley, S.R.: Resonant returns to close approaches: analytical theory. Astron. Astrophys. 408, 1179–1196 (2003)ADSCrossRefGoogle Scholar
  11. Valsecchi, G.B., Alessi, E.M., Rossi, A.: An analytical solution for the swing-by problem. Celest. Mech. Dyn. Astron. 123, 151–166 (2015a)ADSMathSciNetCrossRefGoogle Scholar
  12. Valsecchi, G.B., Alessi, E.M., Rossi, A.: Erratum to: an analytical solution for the swing-by problem. Celest. Mech. Dyn. Astron. 123, 167–167 (2015b)ADSCrossRefGoogle Scholar
  13. Valsecchi, G.B., Alessi, E.M., Rossi, A.: Cartography of the b-plane of a close encounter I: semimajor axes of post-encounter orbits. Celest. Mech. Dyn. Astron. 130, 8 (2018)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • G. B. Valsecchi
    • 1
    • 2
    Email author
  • A. Del Vigna
    • 3
    • 4
  • M. Ceccaroni
    • 5
  1. 1.IAPS-INAFRomeItaly
  2. 2.IFAC-CNRSesto FiorentinoItaly
  3. 3.Università di PisaPisaItaly
  4. 4.Space Dynamics Services s.r.lNavacchio di CascinaItaly
  5. 5.Cranfield UniversityCranfieldUK

Personalised recommendations