Advertisement

The inverse problem for homothetic polygonal central configurations

  • Marcelo P. SantosEmail author
Original Article
  • 20 Downloads

Abstract

We prove that, for some potentials (including the Newtonian one and the potential of Helmholtz vortices in the plane), central configurations with nonzero total mass consisting of two homothetic polygons of arbitrary size can only occur if the masses at each polygon are equal. The same result is true for many polygons as long as the ratios between the radii of the polygons are sufficiently large.

Keywords

Celestial Mechanics N-Body problem N-Vortex problem Central configurations Relative equilibrium Polygonal central configuration 

Mathematics Subject Classification

70F10 70F15 70F17 70Fxx 37N05 

Notes

Acknowledgements

The author would like to thank Eduardo S. G. Leandro for being the advisor on this work and Thiago Dias for the helpful comments, as well as the Department of Mathematics at Universidade Federal Rural de Pernambuco for their assistance. We would like to thank the anonymous referees for their helpful comments and suggestions that improved an earlier version of this paper.

Compliance with ethical standards

Conflict of interest

The author declares that he has no conflict of interest.

References

  1. Albouy, A.: On a paper of Moeckel on central configurations. Reg. Chaotic Dyn. 8, 133–142 (2003)ADSMathSciNetCrossRefGoogle Scholar
  2. Albouy, A., Cabral, H.E., Santos, A.A.: Some problems on the classical n-body problem. Celest. Mech. Dyn. Astron. 113, 369–375 (2012)ADSMathSciNetCrossRefGoogle Scholar
  3. Aref, H., Newton, P.K., Stremler, M.A., Tokieda, T., Vainchtein, D.L.: Vortex crystals. Adv. Appl. Mech. 39, 1–79 (2003)CrossRefGoogle Scholar
  4. Bang, D., Elmabsout, B.: Configurations polygonales en équilibre relatif. Comptes Rendus de l’Acadmie des Sciences-Series IIB-Mechanics 329, 243–248 (2001)ADSCrossRefGoogle Scholar
  5. Celli, M., Lacomba, E.A., Pérez-Chavela, E.: On polygonal relative equilibria in the N-vortex problem. J. Math. Phys. 52, 1–8 (2009)MathSciNetzbMATHGoogle Scholar
  6. Corbera, M., Delgado, J., Llibre, J.: On the existence of central configurations Of P nested n-gons. Qual. Theory Dyn. Syst. 8, 255–265 (2009)MathSciNetCrossRefGoogle Scholar
  7. Davis, P.J.: Circulant Matrices. AMS Chelsea Publishing, Madison (1994)zbMATHGoogle Scholar
  8. Elmabsout, B.: Sur l’existence de certaines configurations d’equilibre relatif dans le problème des $n$ corps. Celest. Mech. Dynam. Astron. 41, 131–151 (1988)MathSciNetCrossRefGoogle Scholar
  9. Elmabsout, B.: Nouvelles configurations d’equilibre relatif dans le probléme des n corps, Comptes rendus de l’Académie des sciences, Série 2. Mécanique, Physique, Chimie, Sciences de l’univers, Sciences de la Terre 312, 467–472 (1991)ADSMathSciNetzbMATHGoogle Scholar
  10. Helmholtz, H.: Uber Integrale der hydrodynamischen Gleichungen, Welche den Wirbelbewegungen entsprechen. Crelle’s Journal für Mathematik, 55, 25–55 (1858). English translation by Tait, P.G.: On the integrals of the hydrodynamical equations which express vortex motion. Philos. Mag. 485–512 (1867)MathSciNetCrossRefGoogle Scholar
  11. Liu, X., Zhang, S., Luo, J.: On periodic solutions for nested polygon planar 2N+1-body problems with arbitrary masses. Ital. J. Pure Appl. Math. 27, 63–80 (2010)MathSciNetzbMATHGoogle Scholar
  12. Llibre, J., Moeckel, R., Simó, C.: Central Configurations, Periodic Orbits, and Hamiltonian Systems. Birkhäuser, Basel (2015)CrossRefGoogle Scholar
  13. Meyer, K.R., Hall, G.R., Offin, D.: Introduction To Hamiltonian Dynamical Systems and The N-Body Problem. Springer, New York (2008)zbMATHGoogle Scholar
  14. Moeckel, R., Simó, C.: Bifurcation of spatial central configurations from planar ones. SIAM J. Math. Anal. 26, 978–998 (1995)MathSciNetCrossRefGoogle Scholar
  15. Montaldi, J.: Existence of symmetric central configurations. Celest. Mech. Dyn. Astron. 122(4), 405–418 (2015)ADSMathSciNetCrossRefGoogle Scholar
  16. Perko, L.M., Walter, E.L.: Regular polygon solutions of the n-body problem. Proc. Am. Math. Soc. 94, 301–309 (1985)MathSciNetzbMATHGoogle Scholar
  17. Santos, Marcelo P.: O problema inverso para equilíbrios relativos poligonais, Ph.D. Thesis (Portuguese), Federal University of Pernambuco, Brazil, February (2014)Google Scholar
  18. Smale, S.: Mathematical problems for the next century. Math. Intell. 20, 7–15 (1998)MathSciNetCrossRefGoogle Scholar
  19. Wang, Z., Li, F.: A note on the two nested regular polygonal central configurations. Proc. Am. Math. Soc. 143, 4817–4822 (2015)MathSciNetCrossRefGoogle Scholar
  20. Zhang, S., Zhou, Q.: Periodic solutions of planar 2N-body problems. Proc. Am. Math. Soc. 131, 2161–2170 (2002)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Depto de MatemáticaUniversidade Federal Rural de PernambucoRecifeBrazil

Personalised recommendations