Advertisement

The use of vertical instability of \(L_1\) and \(L_2\) planar Lyapunov orbits for transfers from near rectilinear halo orbits to planar distant retrograde orbits in the Earth–Moon system

  • Kenta OshimaEmail author
Original Article
  • 285 Downloads

Abstract

This paper highlights natural transport pathways between in-plane and out-of-plane states associated with the vertical instability of planar Lyapunov orbits around the Lagrange points \(L_1\) and \(L_2\) in the Earth–Moon circular restricted three-body problem. Computations of invariant manifolds associated with the vertical instability of planar periodic orbits, “vertically” stable and unstable manifolds, enable quantitative analyses of inclination changes. This study finds that multiple lunar flybys gradually change the orbital elements of vertically stable and unstable manifolds, and that the distributions of the affected orbital elements depend on the Jacobi constant and on the associated Lagrange point \(L_1\) or \(L_2\) of the planar Lyapunov orbits. As an application, this study uses the vertically stable manifolds of the planar Lyapunov orbits as initial guesses for optimizing transfers from near rectilinear halo orbits to planar distant retrograde orbits. Significant \({\varDelta }v\) savings as compared with the known solutions demonstrate the usefulness of the vertical instability in spacecraft trajectory designs.

Keywords

Vertical instability Planar Lyapunov orbits Near rectilinear halo orbits Planar distant retrograde orbits Circular restricted three-body problem Optimization 

Notes

Acknowledgements

This study has been partially supported by Grant-in-Aid for JSPS Fellows No. 18J00678.

Compliance with ethical standards

Conflicts of interest

The author declares that he has no conflicts of interest.

References

  1. Anderson, R.L., Lo, M.W.: Role of invariant manifolds in low-thrust trajectory design. J. Guid. Control Dyn. 32, 1921–1930 (2009).  https://doi.org/10.2514/1.37516 ADSCrossRefGoogle Scholar
  2. Anderson, R.L., Campagnola, S., Lantoine, G.: Broad search for unstable resonant orbits in the planar circular restricted three-body problem. Celest. Mech. Dyn. Astron. 124, 177–199 (2016).  https://doi.org/10.1007/s10569-015-9659-7 ADSMathSciNetCrossRefGoogle Scholar
  3. Betts, J.T.: Survey of numerical methods for trajectory optimization. J. Guid. Control Dyn. 21, 193–207 (1998).  https://doi.org/10.2514/2.4231 ADSCrossRefzbMATHGoogle Scholar
  4. Campagnola, S., Kawakatsu, Y.: Three-dimensional resonant hopping strategies and the Jupiter magnetospheric orbiter. J. Guid. Control Dyn. 35, 340–344 (2012).  https://doi.org/10.2514/1.53334 ADSCrossRefGoogle Scholar
  5. Capdevila, L.R., Howell, K.C.: A transfer network linking Earth, Moon, and the triangular libration point regions in the Earth–Moon system. Adv. Space Res. 62, 1826–1852 (2018).  https://doi.org/10.1016/j.asr.2018.06.045 ADSCrossRefGoogle Scholar
  6. Davis, D.C., Howell, K.C.: Characterization of trajectories near the smaller primary in restricted problem for applications. J. Guid. Control Dyn. 35, 116–128 (2012).  https://doi.org/10.2514/1.53871 ADSCrossRefGoogle Scholar
  7. Davis, K., Born, G., Butcher, E.: Transfers to Earth–Moon \(L_3\) halo orbits. Acta Astronaut. 88, 116–128 (2013).  https://doi.org/10.1016/j.actaastro.2013.03.004 ADSCrossRefGoogle Scholar
  8. Dei Tos, D.A., Russell, R.P., Topputo, F.: Survey of Mars ballistic capture trajectories using periodic orbits as generating mechanisms. J. Guid. Control Dyn. 41, 1227–1242 (2018).  https://doi.org/10.2514/1.G003158 ADSCrossRefGoogle Scholar
  9. Dichmann, D.J., Lebois, R., Carrico Jr., J.P.: Dynamics of orbits near 3:1 resonance in the Earth–Moon system. J. Astronaut. Sci. 60, 51–86 (2013).  https://doi.org/10.1007/s40295-014-0009-x ADSCrossRefGoogle Scholar
  10. Doedel, E.J., Paffenroth, R.C., Keller, H.B., Dichmann, D.J., Galán-Vioque, J., Vanderbauwhede, A.: Computation of periodic solutions of conservative systems with application to the 3-body problem. Int. J. Bifurc. Chaos 13, 1353–1381 (2003).  https://doi.org/10.1142/S0218127403007291 MathSciNetCrossRefzbMATHGoogle Scholar
  11. Enright, P.J., Conway, B.A.: Discrete approximations to optimal trajectories using direct transcription and nonlinear programming. J. Guid. Control Dyn. 15, 994–1002 (1992).  https://doi.org/10.2514/3.20934 ADSCrossRefzbMATHGoogle Scholar
  12. Hadjidemetriou, J.D.: Symmetric and asymmetric librations in extrasolar planetary systems: a global view. Celest. Mech. Dyn. Astron. 95, 225–244 (2006).  https://doi.org/10.1007/s10569-006-9007-z ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. Hénon, M.: Numerical exploration of the restricted problem. V. Hill’s case: periodic orbits and their stability. A&A 1, 223–238 (1969)ADSzbMATHGoogle Scholar
  14. Hénon, M.: Vertical stability of periodic orbits in the restricted problem I. Equal masses. A&A 28, 415–426 (1973)ADSzbMATHGoogle Scholar
  15. Hénon, M.: Vertical stability of periodic orbits in the restricted problem II. Hill’s case. A&A 30, 317–321 (1974)ADSzbMATHGoogle Scholar
  16. Howell, K.C., Breakwell, J.V.: Almost rectilinear halo orbits. Celest. Mech. 32, 29–52 (1984).  https://doi.org/10.1007/BF01358402 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. Keller, H.B.: Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, Application of Bifurcation Theory. Academic Press, New York (1977)zbMATHGoogle Scholar
  18. Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10, 427–469 (2000).  https://doi.org/10.1063/1.166509 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Low energy transfer to the Moon. Celest. Mech. Dyn. Astron. 81, 63–73 (2001).  https://doi.org/10.1023/A:1013359120468 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Dynamical Systems, the Three-Body Problem and Space Mission Design. Marsden Books, Wellington (2011)zbMATHGoogle Scholar
  21. Lam, T., Whiffen, G.J.: Exploration of distant retrograde orbits around Europa. AAS/AIAA Space Flight Mechanics Meeting, AAS 05-110, Copper Mountain, USA, pp. 23–27 January (2005)Google Scholar
  22. Lara, M., Russell, R., Villac, B.F.: Classification of the distant stability regions at Europa. J. Guid. Control Dyn. 30, 409–418 (2007).  https://doi.org/10.2514/1.22372 ADSCrossRefGoogle Scholar
  23. Libert, A.S., Sotiriadis, S., Antoniadou, K.I.: Influence of periodic orbits on the formation of giant planetary systems. Celest. Mech. Dyn. Astron. 130, 19 (2018).  https://doi.org/10.1007/s10569-017-9813-5 ADSMathSciNetCrossRefGoogle Scholar
  24. Markellos, V.V.: Bifurcations of planar to three-dimensional periodic orbits in the general three-body problem. Celest. Mech. 25, 3–31 (1981).  https://doi.org/10.1007/BF01301803 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. McGuire, M.L., Burke, L.M., McCarty, S.L., Hack, K.J., Whitley, R.J., Davis, D.C., Ocampo, C.: Low thrust cis-lunar transfers using a 40 KW-class solar electric propulsion spacecraft. AAS/AIAA Astrodynamics Specialist Conference, AAS 17-583, Stevenson, USA, 20–24 August (2017)Google Scholar
  26. Murray, C.D., Dermott, S.F.: Solar System Dynamics. Cambridge University Press, New York (1999)zbMATHGoogle Scholar
  27. Oshima, K., Yanao, T.: Jumping mechanisms of Trojan asteroids in the restricted three- and four-body problems. Celest. Mech. Dyn. Astron. 122, 53–74 (2015).  https://doi.org/10.1007/s10569-015-9609-4 ADSMathSciNetCrossRefGoogle Scholar
  28. Oshima, K., Campagnola, S., Yam, C.H., Kayama, Y., Kawakatsu, Y., Ozaki, N., Verspieren, Q., Kakihara, K., Oguri, K., Funase, R.: EQUULEUS mission analysis: design of the transfer phase. In: International Symposium on Space Technology and Science, ISTS-2017-d-159, Ehime, Japan, 3–9 June (2017)Google Scholar
  29. Parrish, N.L., Parker, J.S., Hughes, S.P., Heiligers, J.: Low-thrust transfers from distant retrograde orbits to L2 halo orbits in the Earth–Moon system. International Conference on Astrodynamics Tools and Techniques, Darmstadt; Germany, 14–17 March (2016)Google Scholar
  30. Pritchett, R.E., Zimovan, E.M., Howell, K.C.: Impulsive and low-thrust transfer design between stable and nearly stable periodic orbits in the restricted problem. AIAA SciTech Forum, AIAA 2018-1690, Kissimmee, USA, 8–12 January (2018).  https://doi.org/10.2514/6.2018-1690
  31. Restrepo, R.L., Russell, R.P.: A database of planar axisymmetric periodic orbits for the Solar system. Celest. Mech. Dyn. Astron. 130, 49 (2018).  https://doi.org/10.1007/s10569-018-9844-6 ADSMathSciNetCrossRefGoogle Scholar
  32. Robin, I.A., Markellos, V.V.: Numerical determination of three-dimensional periodic orbits generated from vertical self-resonant satellite orbits. Celest. Mech. 21, 395–434 (1980).  https://doi.org/10.1007/BF01231276 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. Russell, R.P.: Global search for planar and three-dimensional periodic orbits near Europa. J. Astronaut. Sci. 54, 199–226 (2006).  https://doi.org/10.1007/BF03256483 ADSMathSciNetCrossRefGoogle Scholar
  34. Simó, C., Gómez, G., Jorba, À., Masdemont, J.: The bicircular model near the triangular libration points of the RTBP. In: Roy, A.E., Steves, B.A. (eds.) From Newton to Chaos. Springer, Boston (1995).  https://doi.org/10.1007/978-1-4899-1085-1_34 CrossRefzbMATHGoogle Scholar
  35. Strange, N., Landau, D., McElrath, T., Lantoine, G., Lam, T.: Overview of mission design for NASA asteroid redirect robotic mission concept. In: 33rd International Electric Propulsion Conference, IEPC-2013-321, Washington, USA, 6–10 October (2013)Google Scholar
  36. Szebehely, V.: Theory of Orbits: The Restricted Problem of Three Bodies. Academic Press Inc, New York (1967)zbMATHGoogle Scholar
  37. Topputo, F.: On optimal two-impulse Earth–Moon transfers in a four-body model. Celest. Mech. Dyn. Astron. 117, 279–313 (2013).  https://doi.org/10.1007/s10569-013-9513-8 ADSMathSciNetCrossRefGoogle Scholar
  38. Voyatzis, G., Antoniadou, K.I., Tsiganis, K.: Vertical instability and inclination excitation during planetary migration. Celest. Mech. Dyn. Astron. 119, 221–235 (2014).  https://doi.org/10.1007/s10569-014-9566-3 ADSMathSciNetCrossRefGoogle Scholar
  39. Zagouras, C., Markellos, V.V.: Axisymmetric periodic orbits in the restricted problem in three dimensions. A&A 59, 79–89 (1977)ADSzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.National Astronomical Observatory of JapanTokyoJapan

Personalised recommendations