Advertisement

Coupling between the spin precession and polar motion of a synchronously rotating satellite: application to Titan

  • Rose-Marie BalandEmail author
  • Alexis Coyette
  • Tim Van Hoolst
Original Article

Abstract

We here develop, in an angular momentum approach, a consistent model that integrates all rotation variables and considers forcing both by the central planet and a potential atmosphere. Existing angular momentum approaches for studying the polar motion, precession, and libration of synchronously rotating satellites, with or without an internal global fluid layer (e.g., a subsurface ocean) usually focus on one aspect of rotation and neglect coupling with the other rotation phenomena. The model variables chosen correspond most naturally with the free modes, although they differ from those of Earth rotation studies, and facilitate a comparison with existing decoupled rotation models that break the link between the rotation motions. The decoupled models perform well in reproducing the free modes, except for the Free Ocean Nutation in the decoupled polar motion model. We also demonstrate the high accuracy of the analytical forced solutions of decoupled models, which are easier to use to interpret observations from past and future space missions. We show that the effective decoupling between the polar motion and precession implies that the spin precession and its associated mean obliquity are mainly governed by the external gravitational torque by the parent planet, whereas the polar motion of the solid layers is mainly governed by the angular momentum exchanges between the atmosphere (e.g., for Titan) and the surface. To put into perspective the difference between rotation models for a synchronously rotating icy moon with a thin ice shell and classical Earth rotation models, we also consider the case of the Moon, which has a thick outer layer above a liquid core. We also show that for non-synchronous rotators, the free precession of the outer layer in space degenerates into the tilt-over mode.

Keywords

Cassini state Precession Polar motion Titan Internal ocean Angular momentum formalism 

Notes

Acknowledgements

We thank Benoît Noyelles for allowing us to mutually compare our results. We also thank Antony Trinh for fruitful discussions about Earth rotation. We thank the anonymous reviewer for his comments and suggestions that have helped to improve our paper. The research leading to these results has received funding from the Belgian PRODEX program managed by the European Space Agency in collaboration with the Belgian Federal Science Policy Office.

Conflict of interest The authors declare that they have no conflict of interest.

References

  1. Araki, H., Tazawa, S., Noda, H., Ishihara, Y., Goossens, S., Sasaki, S., Kawano, N., Kamiya, I., Otake, H., Oberst, J., Shum, C.: Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry. Science 323, 897 (2009).  https://doi.org/10.1126/science.1164146 ADSCrossRefGoogle Scholar
  2. Baland, R.M., Van Hoolst, T., Yseboodt, M., Karatekin, Ö.: Titan’s obliquity as evidence of a subsurface ocean? Astron. Astrophys. 530, A141 (2011).  https://doi.org/10.1051/0004-6361/201116578 CrossRefzbMATHGoogle Scholar
  3. Baland, R.M., Yseboodt, M., Van Hoolst, T.: Obliquity of the Galilean satellites: the influence of a global internal liquid layer. Icarus 220, 435 (2012).  https://doi.org/10.1016/j.icarus.2012.05.020 ADSCrossRefGoogle Scholar
  4. Baland, R.M., Tobie, G., Lefèvre, A., Van Hoolst, T.: Titan’s internal structure inferred from its gravity field, shape, and rotation state. Icarus 237, 29 (2014).  https://doi.org/10.1016/j.icarus.2014.04.007 ADSCrossRefGoogle Scholar
  5. Baland, R.M., Yseboodt, M., Van Hoolst, T.: The obliquity of Enceladus. Icarus 268, 12 (2016).  https://doi.org/10.1016/j.icarus.2015.11.039 ADSCrossRefGoogle Scholar
  6. Bills, B.G.: Free and forced obliquities of the Galilean satellites of Jupiter. Icarus 175, 233 (2005).  https://doi.org/10.1016/j.icarus.2004.10.028 ADSCrossRefGoogle Scholar
  7. Bills, B.G., Nimmo, F.: Free and forced obliquities of the Galilean satellites of Jupiter. Icarus 196, 293 (2008).  https://doi.org/10.1016/j.icarus.2008.03.002 ADSCrossRefGoogle Scholar
  8. Boué, G., Rambaux, N., Richard, A.: Rotation of a rigid satellite with a fluid component: a new light onto Titan’s obliquity. Celest. Mech. Dyn. Astron. 129, 449 (2017).  https://doi.org/10.1007/s10569-017-9790-8 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. Colombo, G.: Cassini’s second and third laws. Astron. J. 71, 891 (1966).  https://doi.org/10.1086/109983 ADSCrossRefGoogle Scholar
  10. Coyette, A., Van Hoolst, T., Baland, R.M., Tokano, T.: Modeling the polar motion of Titan. Icarus 265, 1 (2016).  https://doi.org/10.1016/j.icarus.2015.10.015 ADSCrossRefGoogle Scholar
  11. Coyette, A., Baland, R.M., Van Hoolst, T.: Variations in rotation rate and polar motion of a non-hydrostatic Titan. Icarus 307, 83 (2018).  https://doi.org/10.1016/j.icarus.2018.02.003 ADSCrossRefGoogle Scholar
  12. Defraigne, P., Dehant, V., Pâquet, P.: Link between the retrograde-prograde nutations and nutations in obliquity and longitude. Celest. Mech. Dyn. Astron. 62, 363 (1995).  https://doi.org/10.1007/BF00692286 ADSCrossRefGoogle Scholar
  13. Dehant, V., Mathews, P.M.: Precession, Nutation and Wobble of the Earth (2015)Google Scholar
  14. Dumberry, M., Wieczorek, M.A.: The forced precession of the Moon’s inner core. J. Geophys. Res. (Planets) 121, 1264 (2016).  https://doi.org/10.1002/2015JE004986 ADSCrossRefGoogle Scholar
  15. Eckhardt, D.H.: Theory of the libration of the moon. Moon Planets 25, 3 (1981).  https://doi.org/10.1007/BF00911807 ADSCrossRefzbMATHGoogle Scholar
  16. Margot, J.L., Peale, S.J., Jurgens, R.F., Slade, M.A., Holin, I.V.: Effect of core-mantle and tidal torques on Mercury’s spin axis orientation. Science 316, 710 (2007)ADSCrossRefGoogle Scholar
  17. Margot, J.L., Peale, S.J., Solomon, S.C., Hauck II, S.A., Ghigo, F.D., Jurgens, R.F., Yseboodt, M., Giorgini, J.D., Padovan, S., Campbell, D.B.: Mercury’s moment of inertia from spin and gravity data. J. Geophys. Res. (Planets) 117, E00L09 (2012).  https://doi.org/10.1029/2012JE004161 CrossRefGoogle Scholar
  18. Mathews, P.M., Buffett, B.A., Herring, T.A., Shapiro, I.I.: Forced nutations of the earth: influence of inner core dynamics. I—Theory. II—Numerical results and comparisons. III - Very long interferometry data analysis. J. Geophys. Res. 96, 8219 (1991).  https://doi.org/10.1029/90JB01955 ADSCrossRefGoogle Scholar
  19. Meriggiola, R., Iess, L., Stiles, B.W., Lunine, J.I., Mitri, G.: The rotational dynamics of Titan from Cassini RADAR images. Icarus 275, 183 (2016).  https://doi.org/10.1016/j.icarus.2016.01.019 ADSCrossRefGoogle Scholar
  20. Moritz, H., Mueller, I.I.: Earth rotation : theory and observation (1987)Google Scholar
  21. Noyelles, B., Nimmo, F.: On the time-variable nature of Titan’s obliquity. In: AAS/Division of Dynamical Astronomy Meeting, vol. 45, p. 301.03 (2014)Google Scholar
  22. Noyelles, B.: Behavior of nearby synchronous rotations of a Poincaré–Hough satellite at low eccentricity. Celest. Mech. Dyn. Astron. 112, 353 (2012).  https://doi.org/10.1007/s10569-012-9398-y ADSMathSciNetCrossRefGoogle Scholar
  23. Noyelles, B.: Rotation of a synchronous viscoelastic shell. Mon. Not. R. Astron. Soc. 474, 5614 (2018).  https://doi.org/10.1093/mnras/stx3122 ADSCrossRefGoogle Scholar
  24. Peale, S.J.: Generalized Cassini’s laws. Astron. J. 74, 483 (1969).  https://doi.org/10.1086/110825 ADSCrossRefzbMATHGoogle Scholar
  25. Peale, S.J., Margot, J.L., Hauck, S.A., Solomon, S.C.: Effect of core-mantle and tidal torques on Mercury’s spin axis orientation. Icarus 231, 206 (2014).  https://doi.org/10.1016/j.icarus.2013.12.007 ADSCrossRefGoogle Scholar
  26. Peale, S.J., Margot, J.L., Hauck, S.A., Solomon, S.C.: Consequences of a solid inner core on Mercury’s spin configuration. Icarus 264, 443 (2016).  https://doi.org/10.1016/j.icarus.2015.09.024 ADSCrossRefGoogle Scholar
  27. Rambaux, N., Williams, J.G.: The Moon’s physical librations and determination of their free modes. Celest. Mech. Dyn. Astron. 109, 85 (2011).  https://doi.org/10.1007/s10569-010-9314-2 ADSCrossRefzbMATHGoogle Scholar
  28. Sasao, T., Okubo, S., Saito, M.: A Simple theory on dynamical effects of stratified fluid core upon nutational motion of the Earth. In: Duncombe, R.L. (Ed.) Nutation and the Earth’s Rotation, IAU Symposium, vol. 78, p. 165 (1980)Google Scholar
  29. Smith, M.L.: Wobble and nutation of the earth. Geophys. J. 50, 103 (1977).  https://doi.org/10.1111/j.1365-246X.1977.tb01326.x ADSCrossRefGoogle Scholar
  30. Tokano, T.: Wind-induced equatorial bulge in Venus and Titan general circulation models: implication for the simulation of superrotation. Geophys. Res. Lett. 40, 4538 (2013).  https://doi.org/10.1002/grl.50841 ADSCrossRefGoogle Scholar
  31. Tokano, T., Lorenz, R.D.: Wind-driven circulation in Titan’s seas. J. Geophys. Res. (Planets) 120, 20 (2015).  https://doi.org/10.1002/2014JE004751 ADSCrossRefGoogle Scholar
  32. Tokano, T., Lorenz, R.D., Van Hoolst, T.: Numerical simulation of tides and oceanic angular momentum of Titan’s hydrocarbon seas. Icarus 242, 188 (2014).  https://doi.org/10.1016/j.icarus.2014.08.021 ADSCrossRefGoogle Scholar
  33. Van Hoolst, T.: The rotation of the terrestrial planets. Treatise Geochem. 10, 123 (2007)ADSGoogle Scholar
  34. Van Hoolst, T., Dehant, V.: Influence of triaxiality and second-order terms in flattenings on the rotation of terrestrial planets. I. Formalism and rotational normal modes. Phys. Earth Planet. Inter. 134, 17 (2002).  https://doi.org/10.1016/S0031-9201(02)00068-7 ADSCrossRefGoogle Scholar
  35. Van Hoolst, T., Rambaux, N., Karatekin, Ö., Baland, R.M.: The effect of gravitational and pressure torques on Titan’s length-of-day variations. Icarus 200, 256 (2009).  https://doi.org/10.1029/2009GL041465 ADSCrossRefGoogle Scholar
  36. Van Hoolst, T., Baland, R.M., Trinh, A.: On the librations and tides of large icy satellites. Icarus 226, 299 (2013).  https://doi.org/10.1016/j.icarus.2013.05.036 ADSCrossRefGoogle Scholar
  37. Varadi, F., Musotto, S., Moore, W., Schubert, G.: Normal modes of synchronous rotation. Icarus 176, 235 (2005).  https://doi.org/10.1016/j.icarus.2005.01.002 ADSCrossRefGoogle Scholar
  38. Vienne, A., Duriez, L.: TASS1.6: Ephemerides of the major Saturnian satellites. Astron. Astrophys. 297, 588 (1995)ADSGoogle Scholar
  39. Williams, J.G., Boggs, D.H., Yoder, C.F., Ratcliff, J.T., Dickey, J.O.: Lunar rotational dissipation in solid body and molten core. J. Geophys. Res. 106, 27933 (2001).  https://doi.org/10.1029/2000JE001396 ADSCrossRefGoogle Scholar
  40. Zebker, H.A., Stiles, B., Hensley, S., Lorenz, R., Kirk, R.L., Lunine, J.: Size and shape of Saturn’s Moon Titan. Science 324, 921 (2009).  https://doi.org/10.1126/science.1168905 ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Royal Observatory of BelgiumBrusselsBelgium
  2. 2.UNamur, Namur Institute for Complex System (naXys)NamurBelgium

Personalised recommendations