Low-energy transfers to the Moon with long transfer time

  • Kenta OshimaEmail author
  • Francesco Topputo
  • Tomohiro Yanao
Original Article


This paper globally explores two-impulse, low-energy Earth–Moon transfers in the planar bicircular restricted four-body problem with transfer time of up to 200 days. A grid search combined with a direct transcription and multiple shooting technique reveals numerous families of optimal low-energy solutions, including some that have not been reported yet. We investigate characteristics of solutions in terms of parameters in two- and three-body dynamics, and discuss a trade-off between cost and transfer time based on Pareto-optimal solutions, with and without lunar gravity assists. Analysis of orbital characteristics reveals the role of the Sun, the Earth, and the Moon in the transfer dynamics.


Low-energy transfer Restricted four-body problem Direct transcription and multiple shooting Pareto-optimal solution Lunar gravity assist 



This study has been partially supported by Grant-in-Aid for JSPS Fellows No. 15J07090, and by JSPS Grant-in-Aid, No. 26800207.


  1. Assadian, N., Pourtakdoust, S.H.: Multiobjective genetic optimization of Earth–Moon trajectories in the restricted four-body problem. Adv. Space. Res. 45, 398–409 (2010). ADSCrossRefGoogle Scholar
  2. Belbruno, E.: Lunar capture orbits, a method of constructing Earth–Moon trajectories and the lunar GAS mission. In: AIAA Paper 971054, Proceedings of the AIAA/DGLR/JSASS International Electric Propulsion Conference (1987)Google Scholar
  3. Belbruno, E., Miller, J.: Sun-perturbed Earth-to-Moon transfers with ballistic capture. J. Guid. Control Dyn. 16, 770–775 (1993). ADSCrossRefGoogle Scholar
  4. Belbruno, E., Topputo, F., Gidea, M.: Resonance transition associated to weak capture in the restricted three-body problem. Adv. Space Res. 42, 18–39 (2008). CrossRefGoogle Scholar
  5. Betts, J.T.: Survey of numerical methods for trajectory optimization. J. Guid. Control Dyn. 21, 193–207 (1998). ADSCrossRefzbMATHGoogle Scholar
  6. Campagnola, S., Russell, R.P.: Endgame problem part 2: multi-body technique and T–P graph. J. Guid. Control Dyn. 33, 476–486 (2010). ADSCrossRefGoogle Scholar
  7. Campagnola, S., Boutonnet, A., Schoenmaekers, J., Grebow, D.J., Petropoulos, A.E.: Tisserand-leveraging transfer. J. Guid. Control Dyn. 37, 1202–1210 (2014). ADSCrossRefGoogle Scholar
  8. Chung, M.J., Hatch, S.J., Kangas, J.A., Long, S.M., Roncoli, R.B., Sweetser, T.H.: Trans-lunar cruise trajectory design of GRAIL (Gravity Recovery and Interior Laboratory) mission. In: Paper AIAA 2010-8384, AIAA Guidance, Navigation, and Control Conference, Toronto, Ontario, Canada, 2–5 August (2010)Google Scholar
  9. Circi, C., Teofilatto, P.: On the dynamics of weak stability boundary lunar transfers. Celest. Mech. Dyn. Astr. 79, 41–72 (2001). ADSCrossRefzbMATHGoogle Scholar
  10. Enright, P.J., Conway, B.A.: Discrete approximations to optimal trajectories using direct transcription and nonlinear programming. J. Guid. Control Dyn. 15, 994–1002 (1992). ADSCrossRefzbMATHGoogle Scholar
  11. Grover, P., Ross, S.D.: Designing trajectories in a planet-moon environment using the controlled Keplerian map. J. Guid. Control Dyn. 32, 437–444 (2009). ADSCrossRefGoogle Scholar
  12. Hatch, S.J., Roncoli, R.B., Sweetser, T.H.: Trans-lunar cruise trajectory design of GRAIL (Gravity Recovery and Interior Laboratory) mission. In: Paper AIAA 2010-8385, AIAA Guidance, Navigation, and Control Conference, Toronto, Ontario, Canada, 2–5 August (2010)Google Scholar
  13. Hoffman, T.L.: GRAIL: gravity mapping the Moon. In: IEEE Aerospace Conference, Big Sky, Montana, 7–14 March (2009)Google Scholar
  14. Jerg, S., Junge, O., Ross, S.D.: Optimal capture trajectories using multiple gravity assists. Commun. Nonlinear Sci. Numer. Simul. 14, 4168–4175 (2009). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. Kawaguchi, J., Yamakawa, H., Uesugi, K., Matsuo, H.: On making use of lunar and solar gravity assists in LUNAR-A, PLANET-B missions. Acta Astronaut. 35, 633–642 (1995). ADSCrossRefGoogle Scholar
  16. Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Low energy transfer to the Moon. Celest. Mech. Dyn. Astron. 81, 63–73 (2001). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. Lantoine, G., Russell, R.P., Campagnola, S.: Optimization of low-energy resonant hopping transfers between planetary moons. Acta Astronaut. 68, 1361–1378 (2011). ADSCrossRefGoogle Scholar
  18. Mengali, G., Quarta, A.: Optimization of biimpulsive trajectories in the Earth–Moon restricted three-body system. J. Guid. Control Dyn. 28, 209–216 (2005). ADSCrossRefGoogle Scholar
  19. Miller, J.: Lunar transfer trajectory design and the four-body problem. In: 13th AAS/AIAA Space Flight Mechanics Meeting, AAS 03-144, At Ponce, Puerto Rico (2003)Google Scholar
  20. Mingotti, G., Topputo, F.: Ways to the Moon: a survey. In: 21th AAS/AIAA Space Flight Mechanics Meeting, AAS 11-283, New Orleans (2011)Google Scholar
  21. Moore, A., Ober-Blöobaum, S., Marsden, J.E.: Trajectory design combining invariant manifolds with discrete mechanics and optimal control. J. Guid. Control Dyn. 35, 1507–1525 (2012). ADSCrossRefGoogle Scholar
  22. Morcos, F.M.: Design and optimization of body-to-body impulsive trajectories in restricted four-body models. Ph.D. dissertation, The University of Texas at Austin (2010)Google Scholar
  23. Onozaki, K., Yoshimura, H., Ross, S.D.: Tube dynamics and low energy Earth–Moon transfers in the 4-body system. Adv. Space Res. 60, 2117–2132 (2017). ADSCrossRefGoogle Scholar
  24. Oshima, K., Topputo, F., Campagnola, S., Yanao, T.: Analysis of medium-energy transfers to the Moon. Celest. Mech. Dyn. Astron. 127, 285–300 (2017a). ADSMathSciNetCrossRefGoogle Scholar
  25. Oshima, K., Campagnola, S., Yanao, T.: Global search for low-thrust transfers to the Moon in the planar circular restricted three-body problem. Celest. Mech. Dyn. Astron. 128, 303–322 (2017b). ADSMathSciNetCrossRefGoogle Scholar
  26. Parker, J.S., Anderson, R.L., Peterson, A.: Surveying ballistic transfers to low lunar orbit. J. Guid. Control Dyn. 36, 1501–1511 (2013). ADSCrossRefGoogle Scholar
  27. Parker, J.S., Anderson, R.L.: Targeting low-energy transfers to low lunar orbit. Acta Astronaut. 84, 1–14 (2013). ADSCrossRefGoogle Scholar
  28. Peng, L., Wang, Y., Dai, G., Chang, Y., Chen, F.: Optimization of the Earth–Moon low energy transfer with differential evolution based on uniform design. In: IEEE Congress on Evolutionary Computation, Barcelona (2010).
  29. Pernicka, H.J., Scarberry, D.P., Marsh, S.M., Sweetser, T.H.: A search for low \(\Delta v\) Earth-to-Moon trajectories. J. Astronaut. Sci. 43, 77–88 (1995)Google Scholar
  30. Perozzi, E., Di Salvo, A.: Novel spaceways for reaching the Moon: an assessment for exploration. Celest. Mech. Dyn. Astron. 102, 207–218 (2008). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. Roncoli, R.B., Fujii, K.K.: Mission design overview for the Gravity Recovery and Interior Laboratory (GRAIL) mission. In: Paper AIAA 2010-8383, AIAA Guidance, Navigation, and Control Conference, Toronto, Ontario, Canada, 2–5 August (2010)Google Scholar
  32. Ross, S.D., Lo, M.W.: Design of a multi-Moon orbiter. In: 13th AAS/AIAA Space Flight Mechanics Meeting, AAS 03-143, At Ponce, Puerto Rico (2003)Google Scholar
  33. Ross, S.D., Scheeres, D.J.: Multiple gravity assists, capture, and escape in the restricted three-body problem. SIAM J. Appl. Dyn. Syst. 6, 576–596 (2007). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. Sweetser, T.H.: An estimate of the global minimum \(\Delta v\) needed for Earth–Moon transfer. Adv. Astronaut. Sci. 75, 111–120 (1991)Google Scholar
  35. Szebehely, V.: Theory of Orbits: The Restricted Problem of Three Bodies. Academic Press Inc, New York (1967)zbMATHGoogle Scholar
  36. Topputo, F.: On optimal two-impulse Earth–Moon transfers in a four-body model. Celest. Mech. Dyn. Astron. 117, 279–313 (2013). ADSMathSciNetCrossRefGoogle Scholar
  37. Topputo, F.: Fast numerical approximation of invariant manifolds in the circular restricted three-body problem. Commun. Nonlinear Sci. Numer. Simul. 32, 89–98 (2016). ADSMathSciNetCrossRefGoogle Scholar
  38. Topputo, F., Belbruno, E., Gidea, M.: Resonant motion, ballistic escape, and their applications in astrodynamics. Adv. Space Res. 42, 6–17 (2008). CrossRefGoogle Scholar
  39. Topputo, F., Vasile, M., Bernelli-Zazzera, F.: Earth-to-Moon low energy transfers targeting \(L_1\) hyperbolic transit orbits. Ann. N. Y. Acad. Sci. 1065, 55–76 (2005)ADSCrossRefGoogle Scholar
  40. Uesugi, K.: Results of the MUSES-A HITEN mission. Adv. Space Res. 18, 69–72 (1996). ADSCrossRefGoogle Scholar
  41. Uesugi, K., Matsuo, H., Kawaguchi, J., Hayashi, T.: Japanese first double lunar swingby mission HITEN. Acta Astronaut. 25, 347–355 (1991). ADSCrossRefGoogle Scholar
  42. Whitley, R.J., Ocampo, C.A.: Direct multiple shooting optimization with variable problem parameters. In: Proceedings of the 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando (2009)Google Scholar
  43. Yagasaki, K.: Computation of low energy Earth-to-Moon transfers with moderate flight time. Physica D. 197, 313–331 (2004). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. Yagasaki, K.: Sun-perturbed Earth-to-Moon transfers with low energy and moderate flight time. Celest. Mech. Dyn. Astron. 90, 197–212 (2004). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. Yamakawa, H.: On Earth–Moon transfer trajectory with gravitational capture. Ph.D. dissertation, The University of Tokyo (1993)Google Scholar
  46. Yárnoz, D.G., Yam, C.H., Campagnola, S., Kawakatsu, Y.: Extended Tisserand-Poincaré graph and multiple lunar swingby design with Sun perturbation. In Proceedings of the 6th International Conference on Astrodynamics Tools and Techniques (2016)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Kenta Oshima
    • 1
    Email author
  • Francesco Topputo
    • 2
  • Tomohiro Yanao
    • 3
  1. 1.National Astronomical Observatory of JapanTokyoJapan
  2. 2.Department of Aerospace Science and TechnologyPolitecnico di MilanoMilanItaly
  3. 3.Department of Applied Mechanics and Aerospace EngineeringWaseda UniversityTokyoJapan

Personalised recommendations