Advertisement

Initial orbit determination using Doppler shift of Fraunhofer lines

  • Brett PantaloneEmail author
  • Michael W. Kudenov
Original Article
  • 64 Downloads

Abstract

Techniques for tracking objects in low Earth orbit include line-of-sight angle measurements and range measurements using RADAR or laser reflection. However, active ranging techniques are less effective for higher orbits because of the greater signal loss from distant targets. In this paper, using computer simulation, we show how incorporating measurements of the Doppler shift of Solar Fraunhofer lines can improve initial orbit determination. Results indicate that for Doppler measurement errors of less than 5 m/s, prediction accuracies for some orbital configurations can exceed Gooding’s angles-only method, while using only two observations of the target.

Keywords

Initial orbit determination (IOD) Doppler shift Fraunhofer lines Space situational awareness (SSA) 

Notes

Acknowledgements

The authors would like to acknowledge the Air Force Office of Scientific Research for their support via grant number FA9550-14-1-0256.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10569_2018_9878_MOESM1_ESM.pdf (121 kb)
Supplementary material 1 (pdf 121 KB)

References

  1. Armellin, R., Di Lizia, P., Zanetti, R.: Dealing with uncertainties in angles-only initial orbit determination. Celest. Mech. Dyn. Astron. 125(4), 435–450 (2016)ADSMathSciNetCrossRefGoogle Scholar
  2. Borgniet, S., Meunier, N., Lagrange, A.M.: Using the sun to estimate Earth-like planets detection capabilities: V. Parameterizing the impact of solar activity components on radial velocities. Astron. Astrophys. 581, A133 (2015)ADSCrossRefGoogle Scholar
  3. Cumming, A.: Detectability of extrasolar planets in radial velocity surveys. Mon. Not. R. Astron. Soc. 354(4), 1165–1176 (2004)ADSCrossRefGoogle Scholar
  4. DeMars, K.J., Jah, M.K., Schumacher, P.W.: Initial orbit determination using short-arc angle and angle rate data. IEEE Trans. Aerosp. Electron. Syst. 48(3), 2628–2637 (2012)ADSCrossRefGoogle Scholar
  5. Diego, F., Griffin, R.F., Echevarria, J., Bingham, R.G., Walker, D.D.: CORAVEL. In: Instrumentation in Astronomy VII, SPIE, Tucson, Arizona, vol. 1235, 662–672 (1990)Google Scholar
  6. East, I.R., Reay, N.K.: The motion of interplanetary dust particles: I. Radial velocity measurements on Fraunhofer line profiles in the zodiacal light spectrum. Astron. Astrophys. 139, 512–516 (1984)ADSGoogle Scholar
  7. Ellis, S.C., Bland-Hawthorn, J.: Speciality optical fibres for astronomy. In: Kalli, K., Kanka, J., Mendez, A. (eds.) Proc. SPIE, vol. 9507. SPIE, Prague, Czech Republic (2015)Google Scholar
  8. Escobal, P.R.: Methods of Orbit Determination. Wiley, New York (1965)Google Scholar
  9. Fadrique, F.M., Maté, A.A., Grau, J.J., Sánchez, J.F., García, L.A.: Comparison of angles only initial orbit determination algorithms for space debris cataloguing. J. Aerosp. Eng. 4(1), 39–51 (2012)Google Scholar
  10. Fujimoto, K., Scheeres, D.J., Alfriend, K.T.: Analytical nonlinear propagation of uncertainty in the two-body problem. J. Guidance Control Dyn 35(2), 497–509 (2012)ADSCrossRefGoogle Scholar
  11. Gooding, R.H.: A new procedure for the solution of the classical problem of minimal orbit determination from three lines of sight. Celest. Mech. Dyn. Astron. 66(4), 387–423 (1996)ADSCrossRefGoogle Scholar
  12. Hirschi, D.C., Beard, D.B.: Doppler shifts in zodiacal light. Planet. Space Sci. 35(8), 1021–1027 (1987)ADSCrossRefGoogle Scholar
  13. IADC (2013) Space debris: IADC annual report for 2011. Tech. Rep. IADC-2012-06, U.N. Inter-Agency Space Debris Coordination CommitteeGoogle Scholar
  14. Karimi, R.R., Mortari, D.: Initial orbit determination using multiple observations. Celest. Mech. Dyn. Astron. 109(2), 167–180 (2011)ADSMathSciNetCrossRefGoogle Scholar
  15. Karimi, R.R., Mortari, D.: A performance based comparison of angle-only initial orbit determination methods. In: Adv. Astronaut. Sci., AAS/AIAA, Hilton Head Island, South Carolina, vol 150, pp. 1793–1809 (2013)Google Scholar
  16. Kessler, D., Cour-Palais, B.: Collision frequency of artificial satellites: the creation of a debris belt. J. Geophys. Res. 83(A6), 2637–2646 (1978)ADSCrossRefGoogle Scholar
  17. Laas-Bourez, M., Coward, D., Klotz, A., Boër, M.: A robotic telescope network for space debris identification and tracking. Adv. Space Res. 47(3), 402–410 (2011)ADSCrossRefGoogle Scholar
  18. Lanza, A.F., Molaro, P., Monaco, L., Haywood, R.D.: Long-term radial-velocity variations of the sun as a star: the HARPS view. Astron. Astrophys. 587(3), A103 (2016)ADSCrossRefGoogle Scholar
  19. Milani, A., Gronchi, G.F., Vitturi, M.D.M., Knežević, Z.: Orbit determination with very short arcs: I. Admissible regions. Celest. Mech. Dyn. Astron. 90(1–2), 57–85 (2004)ADSMathSciNetCrossRefGoogle Scholar
  20. Mortari, D., Scuro, S.R., Bruccoleri, C.: Attitude and orbit error in n-dimensional spaces. J. Astronaut. Sci. 54(3–4), 467–484 (2006)ADSMathSciNetCrossRefGoogle Scholar
  21. Pantalone, B., Kudenov, M.W.: Fraunhofer line optical correlator for improvement of initial orbit determination. In: Snik, F., Shaw, J.A. (eds.) Polarization Science and Remote Sensing VIII, vol. 10407, p. 104070K. SPIE, San Diego, CA (2017)Google Scholar
  22. Pepe, F., Mayor, M.: Radial velocities from automated telescopes. Astronomische Nachrichten 325(6–8), 501–506 (2004)ADSCrossRefGoogle Scholar
  23. Pepe, F., Rupprecht, G., Avila, G., Balestra, A., Bouchy, F., Cavadore, C., Eckert, W., Fleury, M., Gillotte, A., Gojak, D., Guzman, J.C., Kohler, D., Lizon, J.L., Mayor, M., Megevand, D., Queloz, D., Sosnowska, D., Udry, S., Weilenmann, U.: Performance verification of HARPS: first laboratory results. In: Iye, M., Moorwood, A. (eds.) Proceedings of SPIE, vol. 4841, pp. 1045–1056. SPIE, Waikoloa (2003)Google Scholar
  24. Schildknecht, T.: Optical surveys for space debris. Astron. Astrophys. Rev. 14(1), 41–111 (2007)ADSCrossRefGoogle Scholar
  25. Swanson, E.: Geometric dilution of precision. Navigation 25(4), 425–429 (1978)CrossRefGoogle Scholar
  26. Tombasco, J.: Orbit estimation of geosynchronous objects via ground-based and space-based optical tracking. Ph.D. Thesis, University of Colorado (2011)Google Scholar
  27. Tommei, G., Milani, A., Rossi, A.: Orbit determination of space debris: admissible regions. Celest. Mech. Dyn. Astron. 97(4), 289–304 (2007)ADSMathSciNetCrossRefGoogle Scholar
  28. Vallado, D.A.: Evaluating Gooding angles-only orbit determination of space based space surveillance measurements. Paper USR pp 10–S4 (2010)Google Scholar
  29. Zucker, S., Tzur, I.: Constraining the orbits of small solar system bodies using spectroscopic Doppler shift measurements: a preliminary study. Astronomische Nachrichten 336(7), 634–637 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations