Lunar frozen orbits revisited

  • Tao NieEmail author
  • Pini Gurfil
Original Article


Lunar frozen orbits, characterized by constant orbital elements on average, have been previously found using various dynamical models, incorporating the gravitational field of the Moon and the third-body perturbation exerted by the Earth. The resulting mean orbital elements must be converted to osculating elements to initialize the orbiter position and velocity in the lunar frame. Thus far, however, there has not been an explicit transformation from mean to osculating elements, which includes the zonal harmonic \(J_2\), the sectorial harmonic \(C_{22}\), and the Earth third-body effect. In the current paper, we derive the dynamics of a lunar orbiter under the mentioned perturbations, which are shown to be dominant for the evolution of circumlunar orbits, and use von Zeipel’s method to obtain a transformation between mean and osculating elements. Whereas the dynamics of the mean elements do not include \(C_{22}\), and hence does not affect the equilibria leading to frozen orbits, \(C_{22}\) is present in the mean-to-osculating transformation, hence affecting the initialization of the physical circumlunar orbit. Simulations show that by using the newly-derived transformation, frozen orbits exhibit better behavior in terms of long-term stability about the mean values of eccentricity and argument of periapsis, especially for high orbits.


Frozen orbit Von Zeipel’s method Third-body effects 



The first author wishes to acknowledge the scholarship provided by the China Scholarship Council and the support from the Asher Space Research Institute at the Technion. In addition, the authors would like to thank the reviewers for providing useful comments.


  1. Abad, A., Elipe, A., Tresaco, E.: Analytical model to find frozen orbits for a lunar orbiter. J. Guid. Control Dyn. 32(3), 888–898 (2009). ADSCrossRefGoogle Scholar
  2. Allan, R.: The critical inclination problem: a simple treatment. Celest. Mech. Dyn. Astron. 2(1), 121–122 (1970). CrossRefGoogle Scholar
  3. Broucke, R.A.: Long-term third-body effects via double averaging. J. Guid. Control Dyn. 26(1), 27–32 (2003). ADSCrossRefGoogle Scholar
  4. Brouwer, D.: Solution of the problem of artificial satellite theory without drag. Astron. J. 64(1274), 378–397 (1959). ADSMathSciNetCrossRefGoogle Scholar
  5. Carvalho, J.P.d.S., De Moraes, R.V., Antonio, F.d.A.: Non-sphericity of the moon and critical inclination. Earth 3(10), 464–470 (2009)Google Scholar
  6. Circi, C., Condoleo, E., Ortore, E.: A vectorial approach to determine frozen orbital conditions. Celest. Mech. Dyn. Astron. 128(2–3), 361–382 (2017). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. Coffey, S.L., Deprit, A., Miller, B.R.: The critical inclination in artificial satellite theory. Celest. Mech. Dyn. Astron. 39(4), 365–406 (1986). MathSciNetCrossRefzbMATHGoogle Scholar
  8. d’Avanzo, P., Teofilatto, P., Ulivieri, C.: Long-term effects on lunar orbiter. Acta Astronaut. 40(1), 13–20 (1997). ADSCrossRefGoogle Scholar
  9. Delsate, N., Robutel, P., Lemaître, A., Carletti, T.: Frozen orbits at high eccentricity and inclination: application to Mercury orbiter. Celest. Mech. Dyn. Astron. 108(3), 275–300 (2010). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. Elipe, A., Lara, M.: Frozen orbits about the moon. J. Guid. Control Dyn. 26(2), 238–243 (2003). ADSCrossRefGoogle Scholar
  11. Elipe, A., Arribas, M., Kalvouridis, T.J.: Periodic solutions in the planar (n+1) ring problem with oblateness. J. Guid. Control Dyn. 30(6), 1640–1648 (2007). ADSCrossRefGoogle Scholar
  12. Folkner, W.M., Williams, J.G., Boggs, D.H.: The planetary and lunar ephemeris DE421. Technical Rept. IOM 343R-08-003, Jet Propulsion Laboratory (March 2008)Google Scholar
  13. Folta, D., Quinn, D.: Lunar frozen orbits. In: AIAA Paper 2006-6749, pp. 1–19 (2006)Google Scholar
  14. Garfinkel, B.: The global solution of the problem of the critical inclination. Celest. Mech. Dyn. Astron. 8(1), 25–44 (1973). MathSciNetCrossRefzbMATHGoogle Scholar
  15. Giacaglia, G.E., Murphy, J.P., Felsentreger, T.L.: A semi-analytic theory for the motion of a lunar satellite. Celest. Mech. Dyn. Astron. 3(1), 3–66 (1970). CrossRefzbMATHGoogle Scholar
  16. Kozai, Y.: The motion of a close Earth satellite. Astron. J. 64, 367–377 (1959). ADSMathSciNetCrossRefGoogle Scholar
  17. Kozai, Y.: Motion of a lunar orbiter. Publ. Astron. Soc. Jpn. 15(3), 301–312 (1963)ADSGoogle Scholar
  18. Kudielka, V.W.: Equilibria bifurcations of satellite orbits. In: The Dynamical Behaviour of Our Planetary System. Springer, pp. 243–255 (1997)Google Scholar
  19. Lara, M.: Simplified equations for computing science orbits around planetary satellites. J. Guid. Control Dyn. 31(1), 172–181 (2008). ADSCrossRefGoogle Scholar
  20. Lara, M.: Design of long-lifetime lunar orbits: a hybrid approach. Acta Astronaut. 69(3), 186–199 (2011). ADSCrossRefGoogle Scholar
  21. Lara, M., Ferrer, S., De Saedeleer, B.: Lunar analytical theory for polar orbits in a 50-degree zonal model plus third-body effect. J. Astronaut. Sci. 57(3), 561–577 (2009). ADSCrossRefGoogle Scholar
  22. Lara, M., Palacián, J.F.: Hill problem analytical theory to the order four: application to the computation of frozen orbits around planetary satellites. Math. Probl. Eng. 2009, 1–18 (2009). CrossRefzbMATHGoogle Scholar
  23. Liu, X., Baoyin, H., Ma, X.: Five special types of orbits around Mars. J. Guid. Control Dyn. 33(4), 1294–1301 (2010). ADSCrossRefGoogle Scholar
  24. Liu, X., Baoyin, H., Ma, X.: Analytical investigations of quasi-circular frozen orbits in the Martian gravity field. Celest. Mech. Dyn. Astron. 109(3), 303–320 (2011). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. Lyddane, R.: Small eccentricities or inclinations in the Brouwer theory of the artificial satellite. Astron. J. 68, 555–558 (1963). ADSMathSciNetCrossRefGoogle Scholar
  26. Paskowitz, M.E., Scheeres, D.J.: Design of science orbits about planetary satellites: application to Europa. J. Guid. Control Dyn. 29(5), 1147–1158 (2006)ADSCrossRefGoogle Scholar
  27. Prado, AFBdA: Third-body perturbation in orbits around natural satellites. J. Guid. Control Dyn. 26(1), 33–40 (2003). ADSCrossRefGoogle Scholar
  28. Roncoli, R.B.: Lunar constants and models document. Technical Rept. JPL-D-32296, Jet Propulsion Laboratory, Pasadena, CA (Sept. 2005)Google Scholar
  29. San-Juan, J., Abad, A., Elipe, A., Tresaco, E.: Analytical model for lunar orbiter. Adv. Astronaut. Sci. 184, 1281–1299 (2008)Google Scholar
  30. Schaub, H., Junkins, J.L.: Analytical mechanics of space systems. AIAA (2003)Google Scholar
  31. Scheeres, D.: Satellite dynamics about asteroids: computing poincaré maps for the general case. In: Hamiltonian Systems with Three or More Degrees of Freedom. Springer, pp. 554–557 (1999). CrossRefGoogle Scholar
  32. Scheeres, D.J.: Orbit mechanics about Asteroids and Comets. J. Guid. Control Dyn. 35(3), 987–997 (2012). CrossRefGoogle Scholar
  33. Scheeres, D.J., Guman, M.D., Villac, B.F.: Stability analysis of planetary satellite orbiters: application to the Europa orbiter. J. Guid. Control Dyn. 24(4), 778–787 (2001). ADSCrossRefGoogle Scholar
  34. Tzirti, S., Tsiganis, K., Varvoglis, H.: Effect of 3rd-degree gravity harmonics and Earth perturbations on lunar artificial satellite orbits. Celest. Mech. Dyn. Astron. 108(4), 389–404 (2010). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. Tzirti, S., Noullez, A., Tsiganis, K.: Secular dynamics of a lunar orbiter: a global exploration using Pronys frequency analysis. Celest. Mech. Dyn. Astron. 118(4), 379–397 (2014). ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Research Center of Satellite Technology, Harbin Institute of TechnologyHarbinChina
  2. 2.Faculty of Aerospace EngineeringTechnion - Israel Institute of TechnologyHaifaIsrael

Personalised recommendations