Advertisement

Reduction and relative equilibria for the two-body problem on spaces of constant curvature

  • A. V. Borisov
  • L. C. García-Naranjo
  • I. S. Mamaev
  • J. Montaldi
Original Article
  • 85 Downloads

Abstract

We consider the two-body problem on surfaces of constant nonzero curvature and classify the relative equilibria and their stability. On the hyperbolic plane, for each \(q>0\) we show there are two relative equilibria where the masses are separated by a distance q. One of these is geometrically of elliptic type and the other of hyperbolic type. The hyperbolic ones are always unstable, while the elliptic ones are stable when sufficiently close, but unstable when far apart. On the sphere of positive curvature, if the masses are different, there is a unique relative equilibrium (RE) for every angular separation except \(\pi /2\). When the angle is acute, the RE is elliptic, and when it is obtuse the RE can be either elliptic or linearly unstable. We show using a KAM argument that the acute ones are almost always nonlinearly stable. If the masses are equal, there are two families of relative equilibria: one where the masses are at equal angles with the axis of rotation (‘isosceles RE’) and the other when the two masses subtend a right angle at the centre of the sphere. The isosceles RE are elliptic if the angle subtended by the particles is acute and is unstable if it is obtuse. At \(\pi /2\), the two families meet and a pitchfork bifurcation takes place. Right-angled RE are elliptic away from the bifurcation point. In each of the two geometric settings, we use a global reduction to eliminate the group of symmetries and analyse the resulting reduced equations which live on a five-dimensional phase space and possess one Casimir function.

Keywords

Reduction Relative equilibria Hamiltonian systems Stability Two-body problem Energy–momentum bifurcation diagram 

Notes

Acknowledgements

We are thankful to both reviewers and the associate editor for their remarks and criticisms which led to an improvement of our paper. We are grateful to Miguel Rodríguez-Olmos for discussing his preliminary results of (2018) with us. The authors express their gratitude to B. S. Bardin and I. A. Bizyaev for fruitful discussions and useful comments. The research contribution of LGN and JM was made possible by a Newton Advanced Fellowship from the Royal Society, Ref: NA140017. The work of AVB and ISM is supported by the Russian Foundation for Basic Research (Project No. 17-01-00846-a). The research of AVB was also carried out within the framework of the state assignment of the Ministry of Education and Science of Russia.

References

  1. Bolsinov, A.V., Borisov, A.V., Mamaev, I.S.: Topology and stability of integrable systems. Russ. Math. Surv. 65(2), 259–318 (2010)MathSciNetCrossRefMATHGoogle Scholar
  2. Bolsinov, A.V., Borisov, A.V., Mamaev, I.S.: The bifurcation analysis and the Conley Index in mechanics. Regul. Chaotic Dyn. 17(5), 457–478 (2012)MathSciNetCrossRefMATHADSGoogle Scholar
  3. Borisov A.V., Mamaev I.S., Rigid body dynamics. Hamiltonian methods, integrability, chaos. Institute of Computer Science, Moscow–Izhevsk (in Russian) (2005)Google Scholar
  4. Borisov, A.V., Mamaev, I.S.: Reduction in the two-body problem on the Lobatchevsky plane. Russ. J. Nonlinear Dyn. 2(3), 279–285 (2006). (in Russian)Google Scholar
  5. Borisov, A.V., Mamaev, I.S.: Rigid body dynamics in NonEuclidean spaces. Russ. J. Math. Phys. 23(4), 431–453 (2016)MathSciNetCrossRefMATHGoogle Scholar
  6. Borisov, A.V., Mamaev, I.S.: The restricted two-body problem in constant curvature spaces. Celest. Mech. Dyn. Astron. 96(1), 1–17 (2006)MathSciNetCrossRefMATHADSGoogle Scholar
  7. Borisov, A.V., Mamaev, I.S., Bizyaev, I.A.: The spatial problem of 2 bodies on a sphere. Reduction and stochasticity. Regul. Chaotic Dyn. 21(5), 556–580 (2016)MathSciNetCrossRefMATHADSGoogle Scholar
  8. Borisov, A.V., Mamaev, I.S., Kilin, A.A.: Two-body problem on a sphere: reduction, stochasticity. Period. Orbits. Regul. Chaotic Dyn. 9(3), 265–279 (2004)MathSciNetCrossRefMATHADSGoogle Scholar
  9. Cariñena, J.F., Rañada, M.F., Santander, M.: Central potentials on spaces of constant curvature: the Kepler problem on the two dimensional sphere \(S^2\) and the hyperbolic plane \(H^2\). J. Math. Phys. 46, 052702 (2005)MathSciNetCrossRefMATHGoogle Scholar
  10. Chernoivan, V.A., Mamaev, I.S.: The restricted two-body problem and the Kepler problem in the constant curvature spaces. Regul. Chaotic Dyn. 4(2), 112–124 (1999)MathSciNetCrossRefMATHGoogle Scholar
  11. Diacu, F.: Relative Equilibria of the Curved \(N\)-Body Problem. Atlantis, Paris (2012)CrossRefMATHGoogle Scholar
  12. Diacu, F., Pérez-Chavela, E., Reyes, J.G.: An intrinsic approach in the curved n-body problem. The negative case. J. Differ. Equ. 252, 4529–4562 (2012)MathSciNetCrossRefMATHADSGoogle Scholar
  13. García-Naranjo, L.C., Marrero, J.C., Pérez-Chavela, E., Rodríguez-Olmos, M.: Classification and stability of relative equilibria for the two-body problem in the hyperbolic space of dimension 2. J. Differ. Equ. 260, 6375–6404 (2016)MathSciNetCrossRefMATHADSGoogle Scholar
  14. Iversen, B.: Hyperbolic Geometry, vol. 25. LMS Student Texts, London (1992)CrossRefMATHGoogle Scholar
  15. Kilin, A.A.: Libration Points in Spaces \(S^2\) and \(L^2\). Regul. Chaotic Dyn. 4(1), 91–103 (1999)MathSciNetCrossRefMATHGoogle Scholar
  16. Killing, H.W.: Die Mechanik in den nicht-euklidischen Raumformen. J. Reine Angew. Math. 98(1), 1–48 (1885)MathSciNetMATHGoogle Scholar
  17. Kozlov, V.V., Harin, A.O.: Kepler’s problem in constant curvature spaces. Cel. Mech. Dyn. Astron. 54, 393–399 (1992)MathSciNetCrossRefMATHADSGoogle Scholar
  18. Markeev, A.P.: Libration points in celestial mechanics and cosmodynamics. M. Nauka (1978) (in Russian)Google Scholar
  19. Marsden, J.E.: Lectures on Mechanics. C.U.P. (1992)Google Scholar
  20. Meyer, K.R., Hall, G.R., Offin, D.: Introduction to Hamiltonian dynamical systems and the \(N\)-body problem. Second edition. Applied Mathematical Sciences, 90. Springer, New York, (2009)Google Scholar
  21. Montaldi, J.: Relative equilibria and conserved quantities in symmetric Hamiltonian systems. In: Peyresq Lectures in Nonlinear Phenomena, World Scientific (2000)Google Scholar
  22. Montaldi, J., Nava-Gaxiola, C.: Point vortices on the hyperbolic plane. J. Math. Phys. 55, 102702 (2014)MathSciNetCrossRefMATHADSGoogle Scholar
  23. Montanelli, H.: Computing hyperbolic choreographies. Regul. Chaotic Dyn. 21(5), 523–531 (2016)MathSciNetCrossRefMATHADSGoogle Scholar
  24. Moser, J.: Lectures on Hamiltonian Systems, vol. 81. American Mathematical Soc, Providence (1968)MATHGoogle Scholar
  25. Pérez-Chavela, E., Reyes-Victoria, J.G.: An intrinsic approach in the curved n-body problem. The positive curvature case. Trans. Am. Math. Soc. 364, 3805–3827 (2012)MathSciNetCrossRefMATHGoogle Scholar
  26. Rodríguez-Olmos, M.: Relative equilibria for the two-body problem on \(S^2\). In preparation (2018)Google Scholar
  27. Schering, E.: Die Schwerkraft in mehrfach ausgedehnten Gaussischen und Riemannschen Räumen. Nachr. Koönigl. Ges. Wiss. Göttingen 1873, 149–159 (1873)MATHGoogle Scholar
  28. Serret, P.J.: Théorie nouvelle géométrique et mécanique des lignes a double courbure. Librave de Mallet-Bachelier, Paris (1860)Google Scholar
  29. Shchepetilov, A.V.: Two-body problem on spaces of constant curvature: 1. Dependence of the Hamiltonian on the Symmetry Group and the reduction of the classical system. Theor. Math. Phys. 124(2), 1068–1081 (2000)MathSciNetCrossRefMATHGoogle Scholar
  30. Shchepetilov, A.V.: Calculus and Mechanics on Two-Point Homogenous Riemannian Spaces. Lect. Notes Phys., vol. 707. Springer, Berlin (2006)Google Scholar
  31. Siegel, C.L., Moser, J.K.: Lectures on Celestial Mechanics. Translated from the German by C. I. Kalme. Reprint of the 1971 Translation. Classics in Mathematics, p. 1995. Springer, Berlin (1995)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • A. V. Borisov
    • 1
    • 2
  • L. C. García-Naranjo
    • 3
  • I. S. Mamaev
    • 4
    • 5
  • J. Montaldi
    • 6
  1. 1.Udmurt State UniversityIzhevskRussia
  2. 2.A.A.Blagonravov Mechanical Engineering Research Institute of RASMoscowRussia
  3. 3.Departamento de Matemáticas y Mecánica IIMAS-UNAMMexico CityMexico
  4. 4.Institute of Mathematics and Mechanics of the Ural Branch of RASEkaterinburgRussia
  5. 5.Izhevsk State Technical UniversityIzhevskRussia
  6. 6.School of MathematicsUniversity of ManchesterManchesterUK

Personalised recommendations