Advertisement

Secular dynamics of multiplanetary circumbinary systems: stationary solutions and binary-planet secular resonance

  • Eduardo Andrade-InesEmail author
  • Philippe Robutel
Original Article

Abstract

We present an analytical formalism to study the secular dynamics of a system consisting of \(N-2\) planets orbiting a binary star in outer orbits. We introduce a canonical coordinate system and expand the disturbing function in terms of canonical elliptic elements, combining both Legendre polynomials and Laplace coefficients, to obtain a general formalism for the secular description of this type of configuration. With a quadratic approximation of the development, we present a simplified analytical solution for the planetary orbits for both the single planet and the two-planet cases. From the two-planet model, we show that the inner planet accelerates the precession rate of the binary pericenter, which, in turn, may enter in resonance with the secular frequency of the outer planet, characterizing a secular resonance. We calculate an analytical expression for the approximate location of this resonance and apply it to known circumbinary systems, where we show that it can occur at relatively close orbits, for example at 2.4 au for the Kepler-38 system. With a more refined model, we analyse the dynamics of this secular resonance and we show that a bifurcation of the corresponding fixed points can affect the long- term evolution and stability of planetary systems. By comparing our results with complete integrations of the exact equations of motion, we verified the accuracy of our analytical model.

Keywords

Circumbinary planets Secular dynamics Secular resonance Analytical development 

References

  1. Abt, H.A.: The frequencies of binaries on the main sequence. Astron. J. 84, 1591 (1979)ADSCrossRefGoogle Scholar
  2. Andrade-Ines, E., Eggl, S.: Secular orbit evolution in systems with a strong external perturber—a simple and accurate model. Astron. J. 153, 148 (2017)ADSCrossRefGoogle Scholar
  3. Andrade-Ines, E., Beaugé, C., Michtchenko, T., Robutel, P.: Secular dynamics of S-type planetary orbits in binary star systems: applicability domains of first- and second-order theories. Celest. Mech. Dyn. Astron. 124, 405 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. Boss, A.P.: Gas giant protoplanets formed by disk instability in binary star systems. Astrophys. J. 641, 1148 (2006)ADSCrossRefGoogle Scholar
  5. Bromley, B.C., Kenyon, S.J.: Planet formation around binary stars: Tatooine made easy. Astrophys. J. 806, 98 (2015)ADSCrossRefGoogle Scholar
  6. Demidova, T.V., Shevchenko, I.I.: Spiral patterns in planetesimal circumbinary disks. Astrophys. J. 805, 38 (2015)ADSCrossRefGoogle Scholar
  7. Desidera, S., Barbieri, M.: Properties of planets in binary systems. The role of binary separation. Astron. Astrophys. 462, 345 (2007)ADSCrossRefGoogle Scholar
  8. Doolin, S., Blundell, K.M.: The dynamics and stability of circumbinary orbits. Mon. Not. R. Astron. Soc. 418, 2656 (2011)ADSCrossRefGoogle Scholar
  9. Doyle, L.R., Carter, J.A., Fabrycky, D.C., et al.: Kepler-16: a transiting circumbinary planet. Science 333, 1602 (2011)ADSCrossRefGoogle Scholar
  10. Duchêne, G., Kraus, A.: Stellar multiplicity. Annu. Rev. Astron. Astrophys. 51, 269 (2013)ADSCrossRefGoogle Scholar
  11. Duquennoy, A., Mayor, M.: Multiplicity among solar-type stars in the solar neighbourhood. II—distribution of the orbital elements in an unbiased sample. Astron. Astrophys. 248, 485 (1991)ADSGoogle Scholar
  12. Dvorak, R.: Numerical experiments on planetary orbits in double stars. Celest. Mech. 34, 369 (1984)ADSCrossRefzbMATHGoogle Scholar
  13. Dvorak, R., Froeschle, C., Froeschle, C.: Stability of outer planetary orbits (P-types) in binaries. Astron. Astrophys. 226, 335 (1989)ADSGoogle Scholar
  14. Eggenberger, A., Udry, S., Mayor, M.: Statistical properties of exoplanets. III. Planet properties and stellar multiplicity. Astron. Astrophys. 417, 353 (2004)ADSCrossRefGoogle Scholar
  15. Eggenberger, A., Udry, S., Chauvin, G., et al.: The impact of stellar duplicity on planet occurrence and properties. I. Observational results of a VLT/NACO search for stellar companions to 130 nearby stars with and without planets. Astron. Astrophys. 474, 273 (2007)ADSCrossRefGoogle Scholar
  16. Eggl, S., Haghighipour, N., Pilat-Lohinger, E.: Detectability of earth-like planets in circumstellar habitable zones of binary star systems with sun-like components. Astrophys. J. 764, 130 (2013)ADSCrossRefGoogle Scholar
  17. Ford, E.B., Kozinsky, B., Rasio, F.A.: Secular evolution of hierarchical triple star systems. Astrophys. J. 535, 385 (2000)ADSCrossRefGoogle Scholar
  18. Georgakarakos, N., Eggl, S.: Analytic orbit propagation for transiting circumbinary planets. Astrophys. J. 802, 94 (2015)ADSCrossRefGoogle Scholar
  19. Giuppone, C.A., Leiva, A.M., Correa-Otto, J., Beaugé, C.: Secular dynamics of planetesimals in tight binary systems: application to \(\gamma \)-Cephei. Astron. Astrophys. 530, A103 (2011)ADSCrossRefGoogle Scholar
  20. Haghighipour, N.: Dynamical stability and habitability of the \(\gamma \) Cephei binary-planetary system. Astrophys. J. 644, 543 (2006)ADSCrossRefGoogle Scholar
  21. Hansen, P.A.: Entwickelung der products einer potenz des radius vectors mit dem sinus oder cosinus eines vielfachen der wahren anomalie in reihen, Abhandld. K. S. Ges. d. Wissensch, IV, pp. 182–281 (1855)Google Scholar
  22. Hill, G.W.: Researches in the lunar theory. Am. J. Math. 5–26, 129 (1978)MathSciNetGoogle Scholar
  23. Hinse, T.C., Haghighipour, N., Kostov, V.B., Goździewski, K.: Predicting a third planet in the Kepler-47 circumbinary system. Astrophys. J. 799, 88 (2015)ADSCrossRefGoogle Scholar
  24. Holman, M.J., Wiegert, P.A.: Long-term stability of planets in binary systems. Astron. J. 117, 621 (1999)ADSCrossRefGoogle Scholar
  25. Kaula, W.M.: Development of the lunar and solar disturbing functions for a close satellite. Astron. J. 67, 300 (1962)ADSMathSciNetCrossRefGoogle Scholar
  26. Kley, W., Haghighipour, N.: Modeling circumbinary planets: the case of Kepler-38. Astron. Astrophys. 564, A72 (2014)ADSCrossRefGoogle Scholar
  27. Kostov, V.B., McCullough, P.R., Carter, J.A., et al.: Kepler-413b: a slightly misaligned, Neptune-size transiting circumbinary planet. Astrophys. J. 784, 14 (2014)ADSCrossRefGoogle Scholar
  28. Kostov, V.B., Orosz, J.A., Welsh, W.F., et al.: Kepler-1647b: the largest and longest-period Kepler transiting circumbinary planet. Astrophys. J. 827, 86 (2016)ADSCrossRefGoogle Scholar
  29. Laskar, J.: The chaotic motion of the solar system—a numerical estimate of the size of the chaotic zones. Icarus 88, 266 (1990)ADSCrossRefGoogle Scholar
  30. Laskar, J.: Large scale chaos and the spacing of the inner planets. Astron. Astrophys. 317, L75 (1997)ADSGoogle Scholar
  31. Laskar, J., Boué, G.: Explicit expansion of the three-body disturbing function for arbitrary eccentricities and inclinations. Astron. Astrophys. 522, A60 (2010)ADSCrossRefzbMATHGoogle Scholar
  32. Laskar, J., Robutel, P.: Stability of the planetary three-body problem. I. Expansion of the planetary Hamiltonian. Celest. Mech. Dyn. Astron. 62, 193 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. Li, G., Holman, M.J., Tao, M.: Uncovering circumbinary planetary architectural properties from selection biases. Astrophys. J. 831, 96 (2016)ADSCrossRefGoogle Scholar
  34. Libert, A.-S., Sansottera, M.: On the extension of the Laplace–Lagrange secular theory to order two in the masses for extrasolar systems. Celest. Mech. Dyn. Astron. 117, 149 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. Lines, S., Leinhardt, Z.M., Paardekooper, S., Baruteau, C., Thebault, P.: Forming circumbinary planets: N-body simulations of Kepler-34. Astrophys. J. 782, L11 (2014)ADSCrossRefGoogle Scholar
  36. Marzari, F., Thebault, P., Scholl, H., Picogna, G., Baruteau, C.: Influence of the circumbinary disk gravity on planetesimal accumulation in the Kepler-16 system. Astron. Astrophys. 553, A71 (2013)ADSCrossRefGoogle Scholar
  37. Meschiari, S.: Planet formation in circumbinary configurations: turbulence inhibits planetesimal accretion. Astrophys. J. 761, L7 (2012)ADSCrossRefGoogle Scholar
  38. Michtchenko, T.A., Rodríguez, A.: Modelling the secular evolution of migrating planet pairs. Mon. Not. R. Astron. Soc. 415, 2275 (2011)ADSCrossRefGoogle Scholar
  39. Moriwaki, K., Nakagawa, Y.: A Planetesimal accretion zone in a circumbinary disk. Astrophys. J. 609, 1065 (2004)ADSCrossRefGoogle Scholar
  40. Musielak, Z.E., Cuntz, M., Marshall, E.A., Stuit, T.D.: Stability of planetary orbits in binary systems. Astron. Astrophys. 434, 355 (2005)ADSCrossRefGoogle Scholar
  41. Naoz, S., Farr, W.M., Lithwick, Y., Rasio, F.A., Teyssandier, J.: Secular dynamics in hierarchical three-body systems. Mon. Not. R. Astron. Soc. 431, 2155 (2013)ADSCrossRefGoogle Scholar
  42. Nelson, A.F.: Planet formation is unlikely in equal-mass binary systems with A 50 AU. Astrophys. J. 537, L65 (2000)ADSCrossRefGoogle Scholar
  43. Orosz, J.A., Welsh, W.F., Carter, J.A., et al.: The Neptune-sized circumbinary planet Kepler-38b. Astrophys. J. 758, 87 (2012)ADSCrossRefGoogle Scholar
  44. Orosz, J.A., Welsh, W.F., Carter, J.A., et al.: How not to build Tatooine: the difficulty of in situ formation of circumbinary planets Kepler 16b, Kepler 34b, and Kepler 35b. Science 337, 1511 (2012)ADSCrossRefGoogle Scholar
  45. Paardekooper, S.-J., Leinhardt, Z.M., Thébault, P., Baruteau, C.: How not to build Tatooine: the difficulty of in situ formation of circumbinary planets Kepler 16b, Kepler 34b, and Kepler 35b. Astrophys. J. 754, L16 (2012)ADSCrossRefGoogle Scholar
  46. Pierens, A., Nelson, R.P.: Migration and gas accretion scenarios for the Kepler 16, 34, and 35 circumbinary planets. Astron. Astrophys. 556, A134 (2013)ADSCrossRefGoogle Scholar
  47. Plummer, H.C.K.: An Introductory Treatise on Dynamical Astronomy. University Press, Cambridge (1918)Google Scholar
  48. Rafikov, R.R.: Building Tatooine: suppression of the direct secular excitation in Kepler circumbinary planet formation. Astrophys. J. 764, L16 (2013)ADSCrossRefGoogle Scholar
  49. Raghavan, D., McAlister, H.A., Henry, T.J., et al.: A survey of stellar families: multiplicity of solar-type stars. Astrophys. J. Suppl. 190, 1 (2010)ADSCrossRefGoogle Scholar
  50. Roell, T., Neuhäuser, R., Seifahrt, A., Mugrauer, M.: Extrasolar planets in stellar multiple systems. Astron. Astrophys. 542, A92 (2012)CrossRefGoogle Scholar
  51. Schwamb, M.E., Orosz, J.A., Carter, J.A., et al.: Planet hunters: a transiting circumbinary planet in a quadruple star system. Astrophys. J. 768, 127 (2013)ADSCrossRefGoogle Scholar
  52. Silsbee, K., Rafikov, R.R.: Planet formation in binaries: dynamics of planetesimals perturbed by the eccentric protoplanetary disk and the secondary. Astrophys. J. 798, 71 (2015)ADSCrossRefGoogle Scholar
  53. Thébault, P., Marzari, F., Scholl, H.: Planet formation in the habitable zone of \(\alpha \) Centauri B. Mon. Not. R. Astron. Soc. 393, L21 (2009)ADSCrossRefGoogle Scholar
  54. Touma, J.R., Sridhar, S.: The disruption of multiplanet systems through resonance with a binary orbit. Nature 524, 439 (2015)ADSCrossRefGoogle Scholar
  55. Welsh, W.F., Orosz, J.A., Carter, J.A., et al.: Transiting circumbinary planets Kepler-34 b and Kepler-35 b. Nature 481, 475 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.IMCCE, Observatoire de Paris - PSL Research UniversityUPMC Univ. Paris 06, CNRSParisFrance
  2. 2.Instituto de Astronomia, Geofísica e Ciências Atmosféricas Rua do Matão 1226Universidade de São PauloSão PauloBrazil

Personalised recommendations