The rectilinear three-body problem as a basis for studying highly eccentric systems

  • G. VoyatzisEmail author
  • K. Tsiganis
  • M. Gaitanas
Original Article
Part of the following topical collections:
  1. Close Approaches and Collisions in Planetary Systems


The rectilinear elliptic restricted three-body problem (TBP) is the limiting case of the elliptic restricted TBP when the motion of the primaries is described by a Keplerian ellipse with eccentricity \(e'=1\), but the collision of the primaries is assumed to be a non-singular point. The rectilinear model has been proposed as a starting model for studying the dynamics of motion around highly eccentric binary systems. Broucke (AIAA J 7:1003–1009, 1969) explored the rectilinear problem and obtained isolated periodic orbits for mass parameter \(\mu =0.5\) (equal masses of the primaries). We found that all orbits obtained by Broucke are linearly unstable. We extend Broucke’s computations by using a finer search for symmetric periodic orbits and computing their linear stability. We found a large number of periodic orbits, but only eight of them were found to be linearly stable and are associated with particular mean motion resonances. These stable orbits are used as generating orbits for continuation with respect to \(\mu \) and \(e'<1\). Also, continuation of periodic solutions with respect to the mass of the small body can be applied by using the general TBP. FLI maps of dynamical stability show that stable periodic orbits are surrounded in phase space with regions of regular orbits indicating that systems of very highly eccentric orbits can be found in stable resonant configurations. As an application we present a stability study for the planetary system HD7449.


Elliptic restricted TBP Rectilinear model Periodic orbits Orbital stability Planetary systems 


  1. Antoniadou, K.I., Voyatzis, G.: Orbital stability of coplanar two-planet exosystems with high eccentricities. Mon. Not. R. Astron. Soc. 461, 3822–3834 (2016)ADSCrossRefGoogle Scholar
  2. Barnes, R., Greenberg, R.: Stability limits in extrasolar planetary systems. Astrophys. J. 647, L163–L166 (2006). ADSCrossRefGoogle Scholar
  3. Broucke, R.: Stability of periodic orbits in the elliptic, restricted three-body problem. AIAA J. 7, 1003–1009 (1969)ADSCrossRefzbMATHGoogle Scholar
  4. Contopoulos, G., Harsoula, M.: Chaotic spiral galaxies. Celest. Mech. Dyn. Astron. 113, 81–94 (2012). ADSCrossRefGoogle Scholar
  5. Danby, J.M.A.: The solution of Kepler’s equation. Celest. Mech. 40, 303–312 (1987)ADSCrossRefzbMATHGoogle Scholar
  6. de Assis, S.C., Terra, M.O.: Escape dynamics and fractal basin boundaries in the planar Earth–Moon system. Celest. Mech. Dyn. Astron. 120, 105–130 (2014). ADSMathSciNetCrossRefGoogle Scholar
  7. Dumusque, C., Lovis, D., Ségransan, M., Mayor, S., Udry, W., Benz, F., Bouchy, G., Lo Curto, C., Mordasini, F., Pepe, D., Queloz, N., Santos, C., Naef, D.: The HARPS search for southern extra-solar planets. XXX. Planetary systems around stars with solar-like magnetic cycles and short-term activity variation. Astron. Astrophys. 535, A55 (2011)ADSCrossRefGoogle Scholar
  8. Froeschlé, C., Lega, E., Gonczi, R.: Fast lyapunov indicators. application to asteroidal motion. Celest. Mech. Dyn. Astron. 67, 41–62 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. Hadjidemetriou, J.D.: Symmetric and asymmetric librations in extrasolar planetary systems: a global view. Celest. Mech. Dyn. Astron. 95, 225–244 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. Hadjidemetriou, J.D., Christides, T.: Families of periodic orbits in the planar three-body problem. Celest. Mech. 12, 175–187 (1975)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. Henon, M.: Generating Families in the Restricted Three-Body Problem. Springer, Berlin (1997)zbMATHGoogle Scholar
  12. Ichtiaroglou, S., Katopodis, K., Michalodimitrakis, M.: On the continuation of periodic orbits in the three-body problem. Astron. Astrophys. 70, 531 (1978)ADSMathSciNetzbMATHGoogle Scholar
  13. Kovács, T., Érdi, B.: Transient chaos in the Sitnikov problem. Celest. Mech. Dyn. Astron. 105, 289–304 (2009). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. Páez, R.I., Efthymiopoulos, C.: Trojan resonant dynamics, stability and chaotic diffusion, for parameters relevant to exoplanetary systems. Celest. Mech. Dyn. Astron. 121, 139–170 (2015). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. Pichardo, B., Sparke, L.S., Aguilar, L.A.: Geometrical and physical properties of circumbinary discs in eccentric stellar binaries. Mon. Not. R. Astron. Soc. 391, 815–824 (2008)ADSCrossRefGoogle Scholar
  16. Pilat-Lohinger, E., Dvorak, R.: Stability of S-type orbits in binaries. Celest. Mech. Dyn. Astron. 82, 143–153 (2002)ADSCrossRefzbMATHGoogle Scholar
  17. Schneider, J., Dedieu, C., Le Sidaner, P., Savalle, R., Zolotukhin, I.: Defining and cataloging exoplanets: the database. Astron. Astrophys. 532, A79 (2011)CrossRefGoogle Scholar
  18. Schubart, J.: Numerische aufsuchung periodischer Losungen im dreikorper-problem. Astron. Nachr. 283, 17–22 (1956)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. Schubart, J.: Libration of arguments of circumbinary-planet orbits at resonance. Celest. Mech. Dyn. Astron. (2017). MathSciNetGoogle Scholar
  20. Voyatzis, G.: Periodic orbits of planets in binary systems. In: Maindl, T.A., Varvoglis, H., Dvorak, R. (eds.) Proccedings of the First Greek-Austrian Workshop on Extrasolar Planetary Systems (2017)Google Scholar
  21. Voyatzis, G., Kotoulas, T., Hadjidemetriou, J.D.: On the 2/1 resonant planetary dynamics–periodic orbits and dynamical stability. Mon. Not. R. Astron. Soc. 395, 2147–2156 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of PhysicsAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations