Non-resonant secular dynamics of trans-Neptunian objects perturbed by a distant super-Earth
- 298 Downloads
- 2 Citations
Abstract
We use a secular model to describe the non-resonant dynamics of trans-Neptunian objects in the presence of an external ten-Earth-mass perturber. The secular dynamics is analogous to an “eccentric Kozai mechanism” but with both an inner component (the four giant planets) and an outer one (the eccentric distant perturber). By the means of Poincaré sections, the cases of a non-inclined or inclined outer planet are successively studied, making the connection with previous works. In the inclined case, the problem is reduced to two degrees of freedom by assuming a non-precessing argument of perihelion for the perturbing body. The size of the perturbation is typically ruled by the semi-major axis of the small body: we show that the classic integrable picture is still valid below about 70 AU, but it is progressively destroyed when we get closer to the external perturber. In particular, for \(a>150\) AU, large-amplitude orbital flips become possible, and for \(a>200\) AU, the Kozai libration islands at \(\omega =\pi /2\) and \(3\pi /2\) are totally submerged by the chaotic sea. Numerous resonance relations are highlighted. The most large and persistent ones are associated with apsidal alignments or anti-alignments with the orbit of the distant perturber.
Keywords
Secular model Trans-Neptunian object (TNO) Poincaré sectionNotes
Acknowledgements
We thank two anonymous referees who helped us to improve the paper. This work was partly funded by Paris Sciences et Lettres (PSL).
References
- Bailey, E., Batygin, K., Brown, M.E.: Solar obliquity induced by planet nine. Astron. J. 152, 126 (2016)ADSCrossRefGoogle Scholar
- Bannister, M.T., Kavelaars, J.J., Gladman, B.J., Petit, J.-M., Burdullis, T., Gwyn, S.D.J., Chen, Y.-T., Alexandersen, M., Schwamb, M.: Minor planet electronic circular 2017-M22. Minor Planet Center (2017)Google Scholar
- Batygin, K., Brown, M.E.: Evidence for a distant giant planet in the Solar System. Astron. J. 151, 22 (2016a)ADSCrossRefGoogle Scholar
- Batygin, K., Brown, M.E.: Generation of highly inclined trans-Neptunian objects by planet nine. Astrophys. J. Lett. 833, L3 (2016b)Google Scholar
- Beust, H.: Orbital clustering of distant Kuiper belt objects by hypothetical Planet 9. Secular or resonant? Astron. Astrophys. 590, L2 (2016)ADSCrossRefGoogle Scholar
- Brown, M.E., Batygin, K.: Observational constraints on the orbit and location of planet nine in the outer Solar System. Astrophys. J. Lett. 824, 23 (2016)ADSCrossRefGoogle Scholar
- de la Fuente Marcos, C., de la Fuente Marcos, R.: Commensurabilities between ETNOs: a Monte Carlo survey. Mon. Not. R. Astron. Soc. 460, 64–68 (2016)CrossRefGoogle Scholar
- Fienga, A., Laskar, J., Manche, H., Gastineau, M.: Constraints on the location of a possible 9th planet derived from the Cassini data. Astron. Astrophys. 587, 8 (2016)ADSCrossRefGoogle Scholar
- Gallardo, T.: Atlas of the mean motion resonances in the Solar System. Icarus 184, 29–38 (2006a)ADSCrossRefGoogle Scholar
- Gallardo, T.: The occurrence of high-order resonances and Kozai mechanism in the scattered disk. Icarus 181, 205–217 (2006b)ADSCrossRefGoogle Scholar
- Gallardo, T., Hugo, G., Pais, P.: Survey of Kozai dynamics beyond Neptune. Icarus 220, 392–403 (2012)ADSCrossRefGoogle Scholar
- Gomes, R., Deienno, R., Morbidelli, A.: The inclination of the planetary system relative to the solar equator may be explained by the presence of Planet 9. Astron. J. 153, 27 (2016)ADSCrossRefGoogle Scholar
- Gomes, R.S., Soares, J.S., Brasser, R.: The observation of large semi-major axis Centaurs: testing for the signature of a planetary-mass solar companion. Icarus 258, 37–49 (2015)ADSCrossRefGoogle Scholar
- Gronchi, G.F.: Generalized averaging principle and the secular evolution of planet crossing orbits. Celest. Mech. Dyn. Astron. 83, 97–120 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- Gronchi, G.F., Milani, A.: Averaging on Earth-crossing orbits. Celest. Mech. Dyn. Astron. 71, 109–136 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- Gronchi, G.F., Milani, A.: Proper elements for Earth-crossing asteroids. Icarus 152, 58–69 (2001)ADSCrossRefGoogle Scholar
- Hamers, A.S., Portegies Zwart, S.F.: Secular dynamics of hierarchical multiple systems composed of nested binaries, with an arbitrary number of bodies and arbitrary hierarchical structure. First applications to multiplanet and multistar systems. Mon. Not. R. Astron. Soc. 459, 2827–2874 (2016)ADSCrossRefGoogle Scholar
- Hamers, A.S., Perets, H.B., Antonini, F., Portegies Zwart, S.F.: Secular dynamics of hierarchical quadruple systems: the case of a triple system orbited by a fourth body. Mon. Not. R. Astron. Soc. 449, 4221–4245 (2015)ADSCrossRefGoogle Scholar
- Harrington, R.S.: Dynamical evolution of triple stars. Astron. J. 73, 190–194 (1968)ADSCrossRefGoogle Scholar
- Hénon, M.: On the numerical computation of Poincaré maps. Phys. D 5, 412–414 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
- Innanen, K.A., Zheng, J.Q., Mikkola, S., Valtonen, M.J.: The Kozai mechanism and the stability of planetary orbits in binary star systems. Astron. J. 113, 1915 (1997)ADSCrossRefGoogle Scholar
- Katz, B., Dong, S., Malhotra, R.: Long-term cycling of Kozai-Lidov cycles: extreme eccentricities and inclinations excited by a distant eccentric perturber. Phys. Rev. Lett. 107, 181101 (2011)ADSCrossRefGoogle Scholar
- Kozai, Y.: Secular perturbations of asteroids with high inclination and eccentricity. Astron. J. 67, 591 (1962)ADSMathSciNetCrossRefGoogle Scholar
- Laskar, J., Boué, G.: Explicit expansion of the three-body disturbing function for arbitrary eccentricities and inclinations. Astron. Astrophys. 522, 60 (2010)ADSCrossRefzbMATHGoogle Scholar
- Li, G., Naoz, S., Holman, M., Loeb, A.: Chaos in the test particle eccentric Kozai–Lidov mechanism. Astrophys. J. 791, 86 (2014a)ADSCrossRefGoogle Scholar
- Li, G., Naoz, S., Kocsis, B., Loeb, A.: Eccentricity growth and orbit flip in near-coplanar hierarchical three-body systems. Astrophys. J. 785, 116 (2014b)ADSCrossRefGoogle Scholar
- Lithwick, Y., Naoz, S.: The eccentric Kozai mechanism for a test particle. Astrophys. J. 742, 94 (2011)ADSCrossRefGoogle Scholar
- Milani, A., Nobili, A.M.: An example of stable chaos in the Solar System. Nature 357, 569–571 (1992)ADSCrossRefGoogle Scholar
- Naoz, S.: The eccentric Kozai–Lidov effect and its applications. Ann. Rev. Astron. Astrophys. 54, 441–489 (2016)ADSCrossRefGoogle Scholar
- Naoz, S., Farr, W.M., Lithwick, Y., Rasio, F.A., Teyssandier, J.: Secular dynamics in hierarchical three-body systems. Mon. Not. R. Astron. Soc. 431, 2155–2171 (2013)ADSCrossRefGoogle Scholar
- Saillenfest, M., Fouchard, M., Tommei, G., Valsecchi, G.B.: Long term dynamics beyond Neptune: secular models to study the regular motions. Celest. Mech. Dyn. Astron. 126, 369–403 (2016)MathSciNetCrossRefGoogle Scholar
- Saillenfest, M., Fouchard, M., Tommei, G., Valsecchi, G.B.: Study and application of the resonant secular dynamics beyond Neptune. Celest. Mech. Dyn. Astron. 127, 477–504 (2017)ADSMathSciNetCrossRefGoogle Scholar
- Takeda, G., Kita, R., Rasio, F.A.: Planetary systems in binaries. I. Dynamical classification. Astrophys. J. 683, 1063–1075 (2008)ADSCrossRefGoogle Scholar
- Teyssandier, J., Naoz, S., Lizarraga, I., Rasio, F.A.: Extreme orbital evolution from hierarchical secular coupling of two giant planets. Astrophys. J. 779, 166 (2013)ADSCrossRefGoogle Scholar
- Thomas, F., Morbidelli, A.: The Kozai resonance in the outer Solar System and the dynamics of long-period comets. Celest. Mech. Dyn. Astron. 64, 209–229 (1996)ADSCrossRefzbMATHGoogle Scholar
- Touma, J.R., Tremaine, S., Kazandjian, M.V.: Gauss’s method for secular dynamics, softened. Mon. Not. R. Astron. Soc. 394, 1085–1108 (2009)ADSCrossRefGoogle Scholar
- Walker, I.W., Emslie, A.G., Roy, A.E.: Stability criteria in many-body systems. I - an empirical stability criterion for co-rotational three-body systems. Celes. Mech. 22, 371–402 (1980)ADSCrossRefzbMATHGoogle Scholar